FGLUBEGINCURVE() UNIX System V FGLUBEGINCURVE()

NAME
fgluBeginCurve, fgluEndCurve — delimit a NURBS curve definition

FORTRAN SPECIFICATION
SUBROUTINE fgluBeginCurve{ CHARACTER*8 nurb )

SUBROUTINE fgluEndCurve{ CHARACTER*8 nurb)

delim $$

PARAMETERS
nurb Specifiesthe NURBS object (created with fgluNewNurbsRenderer).

DESCRIPTION
Use fgluBeginCurve to mark the beginning of a NURBS curve definition. After calling fgluBeginCurve,
make one or more callsto fgluNurbsCurve to define the attributes of the curve. Exactly one of the callsto
fgluNurbsCurve must have a curve type of GL_MAP1 VERTEX_3 or GL_MAP1 VERTEX_4. To
mark the end of the NURBS curve definition, call fgluEndCurve.

GL evaluators are used to render the NURBS curve as a series of line segments. Evaluator state is
preserved during rendering with glPushAttrib(GL_EVAL_BIT) and glPopAttrib(). See the glPushAt-
trib reference page for details on exactly what state these calls preserve.

EXAMPLE

The following commands render a textured NURBS curve with normals; texture coordinates and normals
are also specified as NURBS curves:

gluBeginCurve(nobyj);
gluNurbsCurve(nobyj, ..., GL_MAPL1_TEXTURE_COORD _2);
gluNurbsCurve(nobyj, ..., GL_MAP1_NORMAL);
gluNurbsCurve(nobyj, ..., GL_MAP1_VERTEX_4); gluEndCurve(nobj);

SEE ALSO

fgluBeginSurface, fgluBeginTrim, fgluNewNurbsRenderer, fgluNurbsCurve, glPopAttrib, glPushAt-
trib

Page 1 July 22, 1997



FGLUBEGINPOLY GON() UNIX System V FGLUBEGINPOLY GON()

NAME
fgluBeginPolygon, fgluEndPolygon — delimit a polygon description

FORTRAN SPECIFICATION
SUBROUTINE fgluBeginPolygon( CHARACTER* 8 tess )

SUBROUTINE fgluEndPolygon( CHARACTER*8 tess)

delim $$

PARAMETERS
tess Specifiesthe tessellation object (created with fgluNewT ess).

DESCRIPTION
fgluBeginPolygon and fgluEndPolygon delimit the definition of a nonconvex polygon. To define such a
polygon, first call fgluBeginPolygon. Then define the contours of the polygon by calling fgluT essVertex
for each vertex and fgluNextContour to start each new contour. Finaly, call fgluEndPolygon to signal
the end of the definition. See the fgluTessVertex and fgluNextContour reference pages for more details.

Once fgluEndPolygon is called, the polygon is tessellated, and the resulting triangles are described
through callbacks. See fgluTessCallback for descriptions of the callback functions.

NOTES
This command is obsolete and is provided for backward compatibility only. Calls to fgluBeginPolygon are
mapped to fgluTessBeginPolygon followed by fgluTessBeginContour. Calls to fgluEndPolygon are
mapped to fgluTessEndContour followed by fgluT essEndPolygon.

EXAMPLE
A quadrilateral with atriangular holein it can be described like this:

gluBeginPolygon(tobyj);

gluTessVertex(tobj, v1, vl);

gluTessVertex(tobj, v2, v2);

gluTessVertex(tobj, v3, v3);

gluTessVertex(tobj, v4, v4); gluNextContour(tobj, GLU_INTERIOR);
gluTessVertex(tobj, v5, v5);

gluTessVertex(tobj, v6, v6);

gluTessVertex(tobj, v7, v7); gluEndPolygon(tobyj);

SEE ALSO
fgluNewTess, fgluNextContour, fgluTessCallback, fgluTessVertex, fgluTessBeginPolygon, fglu-
TessBeginContour

Page 1 July 22, 1997



FGLUBEGINSURFACE() UNIX System V FGLUBEGINSURFACE()

NAME
fgluBeginSurface, fgluEndSurface — delimit a NURBS surface definition

FORTRAN SPECIFICATION
SUBROUTINE fgluBeginSurface{ CHARACTER*8 nurb )

SUBROUTINE fgluEndSurface( CHARACTER*8 nurb )

delim $$

PARAMETERS
nurb Specifiesthe NURBS object (created with fgluNewNurbsRenderer).

DESCRIPTION
Use fgluBeginSurface to mark the beginning of a NURBS surface definition. After calling fgluBeginSur -
face, make one or more calls to fgluNurbsSurface to define the attributes of the surface. Exactly one of
these cals to fgluNurbsSurface must have a surface type of GL_MAP2 VERTEX_3 or
GL_MAP2 VERTEX_4. To mark the end of the NURBS surface definition, call fgluEndSurface.

Trimming of NURBS surfaces is supported with fgluBeginTrim, fgluPwlICurve, fgluNurbsCurve, and
fgluENdTrim. See the fgluBeginTrim reference page for details.

GL evaluators are used to render the NURBS surface as a set of polygons. Evaluator state is preserved
during rendering with glPushAttrib(GL_EVAL _BIT) and glPopAttrib(). See the glPushAttrib reference
page for details on exactly what state these calls preserve.

EXAMPLE

The following commands render a textured NURBS surface with normals; the texture coordinates and nor-
mals are also described as NURBS surfaces:

gluBeginSurface(nobj);
gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD _2);
gluNurbsSurface(nobj, ..., GL_MAP2 NORMAL);
gluNurbsSurface(nobj, ..., GL_MAP2 VERTEX_4); gluEndSurface(nohj);

SEE ALSO

fgluBeginCurve, fgluBeginTrim, fgluNewNurbsRenderer, fgluNurbsCurve, fgluNurbsSurface,
fgluPwICurve

Page 1 July 22, 1997



FGLUBEGINTRIM () UNIX System V FGLUBEGINTRIM ()

NAME

fgluBeginTrim, fgluENdTrim — delimit a NURBS trimming loop definition

FORTRAN SPECIFICATION

SUBROUTINE fgluBeginTrim( CHARACTER*8 nurb )
SUBROUTINE fgluEndTrim( CHARACTER*8 nurb)

delim $$

PARAMETERS

nurb Specifiesthe NURBS object (created with fgluNewNurbsRenderer).

DESCRIPTION

Use fgluBeginTrim to mark the beginning of a trimming loop, and fgluEndTrim to mark the end of a
trimming loop. A trimming loop is a set of oriented curve segments (forming a closed curve) that define
boundaries of a NURBS surface. You include these trimming loops in the definition of a NURBS surface,
between calls to fgluBeginSurface and fgluEndSurface.

The definition for a NURBS surface can contain many trimming loops. For example, if you wrote a
definition for a NURBS surface that resembled a rectangle with a hole punched out, the definition would
contain two trimming loops. One loop would define the outer edge of the rectangle; the other would define
the hole punched out of the rectangle. The definitions of each of these trimming loops would be bracketed
by afgluBeginTrim/fgluEndTrim pair.

The definition of a single closed trimming loop can consist of multiple curve segments, each described as a
piecewise linear curve (see fgluPwICurve) or as a single NURBS curve (see fgluNurbsCurve), or as a
combination of both in any order. The only library calls that can appear in a trimming loop definition
(between the callsto fgluBeginTrim and fgluEndTrim) are fgluPwlCurve and fgluNurbsCurve.

The area of the NURBS surface that is displayed is the region in the domain to the left of the trimming
curve as the curve parameter increases. Thus, the retained region of the NURBS surface isinside a counter-
clockwise trimming loop and outside a clockwise trimming loop. For the rectangle mentioned earlier, the
trimming loop for the outer edge of the rectangle runs counterclockwise, while the trimming loop for the
punched-out hole runs clockwise.

If you use more than one curve to define a single trimming loop, the curve segments must form a closed
loop (that is, the endpoint of each curve must be the starting point of the next curve, and the endpoint of the
final curve must be the starting point of the first curve). If the endpoints of the curve are sufficiently close
together but not exactly coincident, they will be coerced to match. If the endpoints are not sufficiently
close, an error results (see fgluNur bsCallback).

If atrimming loop definition contains multiple curves, the direction of the curves must be consistent (that
is, the inside must be to the left of al of the curves). Nested trimming loops are legal as long as the curve
orientations alternate correctly. If trimming curves are self-intersecting, or intersect one another, an error
results.

If no trimming information is given for a NURBS surface, the entire surface is drawn.

EXAMPLE

Page 1

This code fragment defines a trimming loop that consists of one piecewise linear curve, and two NURBS
Ccurves:

gluBeginTrim(nobyj);
gluPwlICurve(..., GLU_MAP1_TRIM_2);
gluNurbsCurve(..., GLU_MAP1 TRIM_2);
gluNurbsCurve(..., GLU_MAP1_TRIM_3); gluEndTrim(nobj);

July 22, 1997



FGLUBEGINTRIM () UNIX System V FGLUBEGINTRIM ()

SEE ALSO
fgluBeginSurface, fgluNewNurbsRender er, fgluNurbsCallback, fgluNurbsCurve, fgluPwICurve

July 22, 1997 Page 2



FGLUBUILD1DMIPMAPS() UNIX System V FGLUBUILD1DMIPMAPS()

NAME

fgluBuild1DMipmaps — builds a 1-D mipmap

FORTRAN SPECIFICATION

INTEGER*4 fgluBuild1DMipmaps INTEGER* 4 target,
INTEGER* 4 internal Format,

INTEGER* 4 width,
INTEGER* 4 format,
INTEGER*4 type,
void data )
delim $$
PARAMETERS
target Specifies the target texture. Must be GL_TEXTURE_1D.

internalFormat Requests the internal storage format of the texture image. Must be 1, 2, 3, or 4 or one of
the following symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHAS,
GL_ALPHA12, GL_ALPHA1S6, GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCEZ1S6,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4 ALPHAA4,
GL_LUMINANCEG6_ALPHAZ2, GL_LUMINANCES_ALPHAS,
GL_LUMINANCE12 ALPHAA4, GL_LUMINANCE12 ALPHA12,
GL_LUMINANCE16 ALPHA16, GL_INTENSITY, GL_INTENSITY4,

GL_INTENSITY8,  GL_INTENSITY12,  GL_INTENSITY16, GL_RGB,
GL_R3 G3 B2, GL_RGB4, GL_RGB5, GL_RGB8, GL RGB10, GL_RGBI12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5 Al, GL_RGBAS,
GL_RGB10_A2, GL_RGBA12 or GL_RGBA16.

width Specifies the width, in pixels, of the texture image.

format Specifies the format of the pixel data. Must be one of GL_COLOR_INDEX, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE,
and GL_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of GL_UNSIGNED BYTE, GL _BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

data Specifies a pointer to the image datain memory.

DESCRIPTION

Page 1

fgluBuild1DMipmaps builds a series of prefiltered 1-D texture maps of decreasing resolutions called a
mipmap. Thisisused for the antialiasing of texture mapped primitives.

A return value of 0 indicates success, otherwise a GLU error code isreturned (see fgluError String).

Initially, the width of data is checked to see if it is a power of two. If not, a copy of data (not data) is
scaled up or down to the nearest power of two. This copy will be used for subsequent mipmapping opera-
tions described below. (If width is exactly between powers of 2, then the copy of data will scale upwards.)
For example, if width is 57 then a copy of data will scale up to 64 before mipmapping takes place.

Then, proxy textures (see gl Texl magelD) are used to determine if the implementation can fit the requested
texture. If not, width is continually halved until it fits.

Next, a series of mipmap levelsisbuilt by decimating a copy of data in half until size 1 isreached. At each
level, each texel in the halved mipmap level is an average of the corresponding two texels in the larger
mipmap level.

July 22, 1997



FGLUBUILD1DMIPMAPS() UNIX System V FGLUBUILD1DMIPMAPS()

glTeximagelD is caled to load each of these mipmap levels. Level 0 isa copy of data. The highest level
islog2(width). For example, if width is 64 and the implementation can store a texture of this size, the fol-
lowing mipmap levels are built: 64x1, 32x1, 16x1, 8x1, 4x1, 2x1 and 1x1. These correspond to levels O
through 6, respectively.

See the glTeximagelD reference page for a description of the acceptable values for type. See the
olDrawPixels reference page for a description of the acceptable values for data.

NOTES
Note that there is no direct way of querying the maximum level. This can be derived indirectly via glGet-
TexLevelParameter. First, query for the width actually used at level 0. (The width may not be equal to
width since proxy textures might have scaled it to fit the implementation.) Then the maximum level can be
derived from the formula log2(width).

ERRORS
GLU_INVALID_VALUE isreturned if widthis< 1.

GLU_INVALID_ENUM isreturned if internalFormat, format or type are not legal.

SEE ALSO
olDrawPixels, gITexlmagelD, gl Texlmage2D, fgluBuild2DMipmaps,
fgluError String, fgluScalel mage

July 22, 1997 Page 2



FGLUBUILD2DMIPMAPS() UNIX System V FGLUBUILD2DMIPMAPS()

NAME

fgluBuild2DMipmaps — builds a 2-D mipmap

FORTRAN SPECIFICATION

INTEGER*4 fgluBuild2DMipmaps INTEGER* 4 tar get,
INTEGER* 4 internal Format,

INTEGER* 4 width,
INTEGER*4 height,
INTEGER* 4 format,
INTEGER*4 type,
void data )

delim $$

PARAMETERS
target Specifies the target texture. Must be GL_TEXTURE_2D.

internalFormat Requests the internal storage format of the texture image. Must be 1, 2, 3, or 4 or one of
the following symbolic constants: GL_ALPHA, GL_ALPHA4, GL_ALPHAS,
GL_ALPHA12, GL_ALPHA1S6, GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCEZ1S6,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4 ALPHAA4,
GL_LUMINANCEG6_ALPHAZ2, GL_LUMINANCES_ALPHAS,
GL_LUMINANCE12 ALPHAA4, GL_LUMINANCE12 ALPHA12,
GL_LUMINANCE16 ALPHA16, GL_INTENSITY, GL_INTENSITY4,

GL_INTENSITY8,  GL_INTENSITY12,  GL_INTENSITY16, GL_RGB,
GL_R3 G3 B2, GL_RGB4, GL_RGB5, GL_RGB8, GL RGB10, GL_RGBI12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5 Al, GL_RGBAS,
GL_RGB10_A2, GL_RGBA12 or GL_RGBA16.

width, height  Specifies the width and height, respectively, in pixels of the texture image.

format Specifies the format of the pixel data. Must be one of: GL_COLOR_INDEX, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE,
and GL_LUMINANCE_ALPHA.

type Specifies the data type for data. Must be one of: GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, or GL_FLOAT.

data Specifies a pointer to the image data in memory.

DESCRIPTION

Page 1

fgluBuild2DMipmaps builds a series of prefiltered 2-D texture maps of decreasing resolutions called a
mipmap. Thisisused for the antialiasing of texture mapped primitives.

A return value of 0 indicates success, otherwise a GLU error code isreturned (see fgluError String).

Initially, the width and height of data are checked to see if they are a power of two. If not, a copy of data
(not data), is scaled up or down to the nearest power of two. This copy will be used for subsequent mip-
mapping operations described below. (If width or height is exactly between powers of 2, then the copy of
data will scale upwards.) For example, if width is 57 and height is 23 then a copy of data will scale up to
64 and down to 16, respectively, before mipmapping takes place.

Then, proxy textures (see gl Texl mage2D) are used to determine if the implementation can fit the requested
texture. If not, both dimensions are continually halved until it fits. (If the OpenGL version is <= 1.0, both
maximum texture dimensions are clamped to the value returned by glGetlntegerv with the argument
GL_MAX_TEXTURE_SIZE.)

July 22, 1997



FGLUBUILD2DMIPMAPS() UNIX System V FGLUBUILD2DMIPMAPS()

Next, a series of mipmap levels is built by decimating a copy of data in half along both dimensions until
size 1x1 isreached. At each level, each texel in the halved mipmap level is an average of the corresponding
four texels in the larger mipmap level. (In the case of rectangular images, the decimation will ultimately
reach an N x 1 or 1 x N configuration. Here, two texels are averaged instead.)

glTeximage2D is caled to load each of these mipmap levels. Level 0 isa copy of data. The highest level
is log2(max(width,height)). For example, if width is 64 and height is 16 and the implementation can store
a texture of this size, the following mipmap levels are built: 64x16, 32x8, 16x4, 8x2, 4x1, 2x1 and 1x1.
These correspond to levels 0 through 6, respectively.

See the glTexImagelD reference page for a description of the acceptable values for format. See the
glDrawPixels reference page for a description of the acceptable values for type.

NOTES
Note that there is no direct way of querying the maximum level. This can be derived indirectly via glGet-
TexL evelParameter. First, query for the width & height actually used at level 0. (The width & height may
not be equal to width & height respectively since proxy textures might have scaled them to fit the imple-
mentation.) Then the maximum level can be derived from the formula log2(max(width,height)).

ERRORS
GLU_INVALID_VALUE isreturned if width or height are < 1.

GLU_INVALID_ENUM isreturned if internalFormat, format or type are not legal.

SEE ALSO
glDrawPixels, gl TexlmagelD, gl Texlmage2D, fgluBuild1DMipmaps,
fgluError String, fgluScalel mage

July 22, 1997 Page 2



FGLUCYLINDER() UNIX System V FGLUCYLINDER()

NAME
fgluCylinder — draw acylinder

FORTRAN SPECIFICATION
SUBROUTINE fgluCylinder ( CHARACTER* 8 quad,

REAL*8 base,
REAL*8 top,
REAL*8 height,
INTEGER* 4 dlices,
INTEGER* 4 stacks)
delim $$
PARAMETERS

quad Specifies the quadrics object (created with fgluNewQuadric).
base Specifiestheradius of the cylinder at z=0.

top  Specifiesthe radius of the cylinder at z= height.

height Specifies the height of the cylinder.

slices Specifies the number of subdivisions around the z axis.

stacks Specifies the number of subdivisions along the z axis.

DESCRIPTION
fgluCylinder draws a cylinder oriented along the z axis. The base of the cylinder is placed at z= 0, and the
top at $z ="height" $. Like a sphere, a cylinder is subdivided around the z axis into slices, and along the z
axisinto stacks.

Note that if top is set to 0.0, this routine generates a cone.

If the orientation is set to GLU_OUTSIDE (with fgluQuadricOrientation), then any generated normals
point away from the z axis. Otherwise, they point toward the z axis.

If texturing is turned on (with fgluQuadricT extur €), then texture coordinates are generated so that t ranges
linearly from 0.0 at z=0to 1.0 at z = height, and s ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to
0.5 at the -y axis, to 0.75 at the —x axis, and back to 1.0 at the +y axis.

SEE ALSO
fgluDisk, fgluNewQuadric, fgluPartialDisk, fgluQuadricTexture, fgluSphere

Page 1 July 22, 1997



FGLUDELETENURBSRENDERER() UNIX System V FGLUDELETENURBSRENDERER()

NAME
fgluDeleteNurbsRenderer — destroy a NURBS object

FORTRAN SPECIFICATION
SUBROUTINE fgluDeleteNurbsRenderer (CHARACTER*8 nurb )

delim $$
PARAMETERS
nurb Specifiesthe NURBS object to be destroyed.

DESCRIPTION
fgluDeleteNurbsRenderer  destroys the NURBS object (which was created with
fgluNewNurbsRenderer) and frees any memory it uses. Once fgluDeleteNurbsRenderer has been
called, nurb cannot be used again.

SEE ALSO
fgluNewNurbsRender er

Page 1 July 22, 1997



FGLUDELETEQUADRIC() UNIX System V FGLUDELETEQUADRIC()

NAME
fgluDeleteQuadric — destroy a quadrics object

FORTRAN SPECIFICATION
SUBROUTINE fgluDeleteQuadric{ CHARACTER*8 quad )

delim $$

PARAMETERS
quad Specifies the quadrics object to be destroyed.

DESCRIPTION
fgluDeleteQuadric destroys the quadrics object (created with fgluNewQuadric) and frees any memory it
uses. Once fgluDeleteQuadric has been called, quad cannot be used again.

SEE ALSO
fgluNewQuadric

Page 1 July 22, 1997



FGLUDELETETESS() UNIX System V FGLUDELETETESS()

NAME
fgluDeleteT ess — destroy a tessellation object

FORTRAN SPECIFICATION
SUBROUTINE fgluDeleteT ess( CHARACTER*8 tess)

delim $$

PARAMETERS
tess Specifiesthe tessellation object to destroy.

DESCRIPTION
fgluDeleteT ess destroys the indicated tessellation object (which was created with fgluNewT ess) and frees
any memory that it used.

SEE ALSO
fgluBeginPolygon, fgluNewT ess, fgluT essCallback

Page 1 July 22, 1997



FGLUDISK () UNIX System V FGLUDISK ()

NAME
fgluDisk — draw adisk

FORTRAN SPECIFICATION
SUBROUTINE fgluDisk( CHARACTER* 8 quad,
REAL*8 inner,
REAL*8 outer,
INTEGER* 4 dlices,
INTEGER*4 loops)

delim $$
PARAMETERS
quad Specifies the quadrics object (created with fgluNewQuadric).
inner Specifies the inner radius of the disk (may be 0).
outer Specifies the outer radius of the disk.
slices Specifies the number of subdivisions around the z axis.
loops Specifies the number of concentric rings about the origin into which the disk is subdivided.

DESCRIPTION
fgluDisk renders adisk on the z= 0 plane. The disk has a radius of outer, and contains a concentric circular
hole with a radius of inner. If inner is 0, then no hole is generated. The disk is subdivided around the z axis
into slices (like pizza slices), and aso about the z axis into rings (as specified by slices and loops, respec-
tively).

With respect to orientation, the +z side of the disk is considered to be "outside" (see fgluQuadricOrienta-
tion). Thismeansthat if the orientation is set to GLU_OUT SIDE, then any normals generated point along
the +z axis. Otherwise, they point along the —z axis.

If texturing has been turned on (with fgluQuadricT exture), texture coordinates are generated linearly such
that where $r = "outer" $, thevalue at (r, 0, 0) is (1, 0.5), at (O, r, 0) itis (0.5, 1), at (-r, 0, 0) itis (0, 0.5),
and at (0, -r, 0) itis (0.5, 0).

SEE ALSO
fgluCylinder, fgluNewQuadric, fgluPartialDisk, fgluQuadricOrientation, fgluQuadricTexture, fglu-
Sphere

Page 1 July 22, 1997



FGLUERRORSTRING() UNIX System V FGLUERRORSTRING()

NAME
fgluError String — produce an error string from a GL or GLU error code

FORTRAN SPECIFICATION
CHARACTER*256 fgluErrorString( INTEGER* 4 error )

delim $$
PARAMETERS
error SpecifiesaGL or GLU error code.

DESCRIPTION
fgluError String produces an error string from a GL or GLU error code. The string isin 1SO Latin 1 for-
mat. For example, fgluError String(GL_OUT_OF _MEMORY) returns the string out of memory.

The standard GLU error codes are GLU_INVALID_ENUM, GLU_INVALID_VALUE, and
GLU _OUT_OF MEMORY. Certain other GLU functions can return specialized error codes through
callbacks. Seethe glGetError reference page for thelist of GL error codes.

SEE ALSO
olGetError, fgluNurbsCallback, fgluQuadricCallback, fgluT essCallback

Page 1 July 22, 1997



FGLUGETNURBSPROPERTY () UNIX System V FGLUGETNURBSPROPERTY ()

NAME
fgluGetNurbsProperty — get aNURBS property

FORTRAN SPECIFICATION
SUBROUTINE fgluGetNur bsProperty( CHARACTER* 8 nurb,
INTEGER* 4 property,
CHARACTER*8 data )

delim $$

PARAMETERS
nurb Specifies the NURBS object (created with fgluNewNurbsRenderer).

property Specifies the property whose value is to be fetched. Valid values are GLU_CULLING,
GLU_SAMPLING_TOLERANCE, GLU_DISPLAY_MODE,
GLU_AUTO_LOAD_MATRIX, GLU_PARAMETRIC_TOLERANCE,
GLU_SAMPLING_METHOD, GLU U _STEP,and GLU_V_STEP.

data Specifies a pointer to the location into which the value of the named property is written.

DESCRIPTION
fgluGetNurbsProperty retrieves properties stored in a NURBS object. These properties affect the way
that NURBS curves and surfaces are rendered. See the fgluNurbsProperty reference page for information
about what the properties are and what they do.

SEE ALSO
fgluNewNurbsRender er, fgluNur bsProperty

Page 1 July 22, 1997



FGLUGETSTRING() UNIX System V FGLUGETSTRING()

NAME

fgluGetString — return a string describing the GLU version or GLU extensions

FORTRAN SPECIFICATION

CHARACTER*256 fgluGetString( INTEGER* 4 name)

PARAMETERS

name Specifies a symbolic constant, one of GLU_VERSION, or GLU_EXTENSIONS.

DESCRIPTION

NOTES

foluGetString returns a pointer to a static string describing the GLU version or the GLU extensions that
are supported.

The version number is one of the following forms:

major_number.minor_number
major_number.minor_number.release_number.

The version string is of the following form:
version humber < space>vendor -specific information
Vendor-specific information is optiona. Itsformat and contents depend on the implementation.

The standard GLU contains a basic set of features and capabilities. |If a company or group of companies
wish to support other features, these may be included as extensions to the GLU. If name is
GLU_EXTENSIONS, then fgluGetString returns a space-separated list of names of supported GLU
extensions. (Extension names never contain spaces.)

All strings are null-terminated.

fgluGetString only returns information about GLU extensions. Call glGetString to get a list of GL exten-
sions.

fgluGetString isan initialization routine. Calling it after agINewL ist resultsin undefined behavior.

ERRORS

NULL isreturned if nameisnot GLU_VERSION or GLU_EXTENSIONS.

SEE ALSO

Page 1

glGetString

July 22, 1997



FGLUGETTESSPROPERTY () UNIX System V FGLUGETTESSPROPERTY ()

NAME
fgluGetTessProperty — get atessellation object property

FORTRAN SPECIFICATION
SUBROUTINE fgluGetTessProperty( CHARACTER* 8 tess,
INTEGER* 4 which,
CHARACTER*8 data )

delim $$

PARAMETERS
tess  Specifies the tessellation object (created with fgluNewT ess).

which Specifies the property whose vaue is to be fetched Vdid values are
GLU_TESS WINDING_RULE, GLU_TESS BOUNDARY_ONLY, and
GLU_TESS TOLERANCE.

data Specifies a pointer to the location into which the value of the named property iswritten.

DESCRIPTION
fgluGetTessProperty retrieves properties stored in a tessellation object. These properties affect the way
that tessellation objects are interpreted and rendered. See the fgluTessProperty reference page for infor-
mation about the properties and what they do.

SEE ALSO
fgluNewT ess, fgluT essProperty

Page 1 July 22, 1997



FGLULOADSAMPLINGMATRICES() UNIX System V FGLULOADSAMPLINGMATRICES()

NAME
fgluL oadSamplingM atrices — load NURBS sampling and culling matrices

FORTRAN SPECIFICATION
SUBROUTINE fgluL oadSamplingM atrices{ CHARACTER*8 nurb,

CHARACTER*8 modedl,
CHARACTER®* 8 perspective,
CHARACTER*8 view)
delim $$
PARAMETERS
nurb Specifies the NURBS object (created with fgluNewNurbsRenderer).
model Specifies amodelview matrix (as from a glGetFloatv call).

perspective Specifies a projection matrix (as from a glGetFloatv call).
view Specifies a viewport (as from aglGetl ntegerv call).

DESCRIPTION
fgluL oadSamplingM atrices uses model, perspective, and view to recompute the sampling and culling
matrices stored in nurb. The sampling matrix determines how finely a NURBS curve or surface must be
tessellated to satisfy the sampling tolerance (as determined by the GLU_SAMPLING_TOLERANCE
property). The culling matrix is used in deciding if a NURBS curve or surface should be culled before
rendering (when the GLU_CULLING property isturned on).

fgluL oadSamplingM atrices is necessary only if the GLU _ AUTO_LOAD_MATRIX property is turned
off (see  fgluNurbsProperty). Although it can be convenient to leave the
GLU _AUTO_LOAD_MATRIX property turned on, there can be a performance penalty for doing so. (A
round trip to the GL server is needed to fetch the current values of the modelview matrix, projection
matrix, and viewport.)

SEE ALSO
fgluGetNurbsProperty, fgluNewNurbsRender er, fgluNurbsProperty

Page 1 July 22, 1997



FGLULOOKAT() UNIX System V FGLULOOKAT()

NAME

fgluL ook At — define a viewing transformation

FORTRAN SPECIFICATION

SUBROUTINE fgluL ook At( REAL*8 eyeX,
REAL*8 eyeY,
REAL*8 eyeZ,
REAL*8 centerX,
REAL*8 center,
REAL*8 centerZ,
REAL*8 upX,
REAL*8 upY,
REAL*8 upZ)

delim $$

PARAMETERS

eyeX, eyeY, eyeZ
Specifies the position of the eye point.

center X, centerY, centerZ
Specifies the position of the reference point.

upX, upY, upZ Specifies the direction of the up vector.

DESCRIPTION

Page 1

fgluL ook At creates a viewing matrix derived from an eye point, a reference point indicating the center of
the scene, and an UP vector.

The matrix maps the reference point to the negative z axis and the eye point to the origin. When a typical
projection matrix is used, the center of the scene therefore maps to the center of the viewport. Similarly,
the direction described by the UP vector projected onto the viewing plane is mapped to the positive y axis
so that it points upward in the viewport. The UP vector must not be parallél to the line of sight from the
eye point to the reference point.

Let

F~="left ( down 20{ ™ matrix {
ccol {"centerX" above "centerY" above "centerZ"}
ccol { °-" above ™" above "-}
ccol {"eyeX" above "eyeY" above "eyeZ"} } } T right)

Let UP be the vector $("upX", "upY", "upZ")$.
Then normalize asfollows: f "=" F over {|| F ||}
UP sup prime™="UP over {|| UP ||}

Finaly, let $s™="f "times™ UP sup prime$, and $u "=" s times™ f$.

M isthen constructed asfollows: M "="left ( matrix {
ccol { “9[0] above "u[Q] above -f[0] above 0}
ccol { "9[1] above "u[1] above -f[1] above 0}
ccol { "9[2] above "u[2] above -f[2] above 0}
ccol { 0 above 0 above O abovel} } ~right)

July 22, 1997



FGLULOOKAT() UNIX System V FGLULOOKAT()

and fgluL ook At is equivalent to giMultMatrixf(M); gl Translated (-eyex, -eyey, -eyez);

SEE ALSO
glFrustum, fgluPer spective

July 22, 1997 Page 2



FGLUNEWNURBSRENDERER() UNIX System V FGLUNEWNURBSRENDERER()

NAME
fgluNewNurbsRenderer — create a NURBS object

FORTRAN SPECIFICATION
CHARACTER*8 fgluNewNurbsRenderer ()

delim $$

DESCRIPTION
fgluNewNurbsRenderer creates and returns a pointer to a new NURBS object. This object must be
referred to when calling NURBS rendering and control functions. A return value of 0 means that there is
not enough memory to allocate the object.

SEE ALSO
fgluBeginCurve, fgluBeginSurface, fgluBeginTrim, fgluDeleteNurbsRenderer, fgluNurbsCallback,
fgluNurbsProperty

Page 1 July 22, 1997



FGLUNEWQUADRIC() UNIX System V FGLUNEWQUADRIC()

NAME
fgluNewQuadric — create a quadrics object

FORTRAN SPECIFICATION
CHARACTER*8 fgluNewQuadric()

delim $$

DESCRIPTION
fgluNewQuadric creates and returns a pointer to a new quadrics object. This object must be referred to
when calling quadrics rendering and control functions. A return value of 0 means that there is not enough
memory to allocate the object.

SEE ALSO
fgluCylinder, fgluDeleteQuadric, fgluDisk, fgluPartialDisk, fgluQuadricCallback, fgluQuadric-
DrawsStyle, fgluQuadricNor mals, fgluQuadricOrientation, fgluQuadricTexture, fgluSphere

Page 1 July 22, 1997



FGLUNEWTESS() UNIX System V FGLUNEWTESS()

NAME
fgluNewT ess — create a tessellation object

FORTRAN SPECIFICATION
CHARACTER*8 fgluNewT ess( )

delim $$

DESCRIPTION
fgluNewT ess creates and returns a pointer to a new tessellation object. This object must be referred to
when calling tessellation functions. A return value of 0 means that there is not enough memory to alocate
the object.

SEE ALSO
fgluT essBeginPolygon, fgluDeleteT ess, fgluT essCallback

Page 1 July 22, 1997



FGLUNEXTCONTOUR() UNIX System V FGLUNEXTCONTOUR()

NAME
fgluNextContour — mark the beginning of another contour

FORTRAN SPECIFICATION
SUBROUTINE fgluNextContour ( CHARACTER* 8 tess,
INTEGER* 4 type)

delim $$

PARAMETERS
tess Specifiesthe tessellation object (created with fgluNewT ess).

type Specifies the type of the contour being defined. Vaid vaues are GLU _EXTERIOR,
GLU INTERIOR, GLU_UNKNOWN, GLU CCW, and GLU_CW.

DESCRIPTION
fgluNextContour is used in describing polygons with multiple contours. After the first contour has been
described through a series of fgluTessVertex cals, a fgluNextContour cal indicates that the previous
contour is complete and that the next contour is about to begin. Another series of fgluTessVertex calsis
then used to describe the new contour. This process can be repeated until al contours have been described.

type defines what type of contour follows. The legal contour types are as follows:
GLU_EXTERIOR An exterior contour defines an exterior boundary of the polygon.
GLU_INTERIOR Aninterior contour defines an interior boundary of the polygon (such as a hole).

GLU_UNKNOWN An unknown contour is analyzed by the library to determine if it is interior or exte-
rior.

GLU_CCW,

GLU_CW Thefirst GLU_CCW or GLU_CW contour defined is considered to be exterior. All
other contours are considered to be exterior if they are oriented in the same direction
(clockwise or counterclockwise) as the first contour, and interior if they are not.

If one contour is of type GLU_CCW or GLU_CW, then all contours must be of the same type (if they are
not, then all GLU_CCW and GLU_CW contours will be changed to GLU_UNKNOWN).

Note that there is no real difference between the GLU_CCW and GLU_CW contour types.

Before the first contour is described, fgluNextContour can be called to define the type of the first contour.
If fgluNextContour is not called before the first contour, then the first contour is marked
GLU_EXTERIOR.

This command is obsolete and is provided for backward compatibility only. Calls to fgluNextContour are
mapped to fgluTessEndContour followed by fgluT essBeginContour.

EXAMPLE
A quadrilateral with atriangular holein it can be described as follows:

gluBeginPolygon(tobyj);

gluTessVertex(tobj, v1, v1);

gluTessVertex(tobj, v2, v2);

gluTessVertex(tobj, v3, v3);

gluTessVertex(tobj, v4, v4); gluNextContour(tobj, GLU_INTERIOR);
gluTessVertex(tobj, v5, v5);

gluTessVertex(tobj, v6, v6);

gluTessVertex(tobj, v7, v7); gluEndPolygon(toby);

Page 1 July 22, 1997



FGLUNEXTCONTOUR() UNIX System V FGLUNEXTCONTOUR()

SEE ALSO
fgluBeginPolygon, fgluNewT ess, fgluT essCallback, fgluTessVertex, fgluTessBeginContour

July 22, 1997 Page 2



FGLUNURBSCALLBACK() UNIX System V FGLUNURBSCALLBACK()

NAME

fgluNurbsCallback — define a callback for aNURBS object

FORTRAN SPECIFICATION

SUBROUTINE fgluNurbsCallback( CHARACTER*8 nurb,
INTEGER* 4 which,
CHARACTER*8 (CallBackFunc)( )

delim $$
PARAMETERS

nurb Specifies the NURBS object (created with fgluNewNur bsRender er).

which Specifies the callback being defined. Valid values are GLU_NURBS BEGIN_EXT,
GLU_NURBS VERTEX_EXT, GLU_NORMAL_EXT,
GLU_NURBS COLOR_EXT, GLU_NURBS TEXTURE_COORD_EXT,
GLU_END_EXT, GLU_NURBS BEGIN_DATA_EXT,
GLU_NURBS VERTEX_DATA_EXT, GLU_NORMAL_DATA_EXT,

GLU_NURBS COLOR_DATA_EXT,
GLU_NURBS TEXTURE_COORD DATA_EXT, GLU_END_DATA_EXT, and
GLU_ERROR.

CallBackFunc Specifies the function that the callback calls.

DESCRIPTION

Page 1

fgluNurbsCallback is used to define a callback to be used by a NURBS object. If the specified callback is
aready defined, then it is replaced. If CallBackFunc is NULL, then this callback will not get invoked and
therelated data, if any, will be lost.

Except the error callback, these callbacks ae used by NURBS tessellator (when
GLU_NURBS MODE_EXT s set to be GLU_NURBS TESSELLATOR_EXT) to return back the
openGL polygon primitives resulted from the tessellation. Note that there are two versions of each call-
back: one with a user data pointer and one without. If both versions for a particular callback are specified
then the callback with the user data pointer will be used. Note that "userData" is a copy of the pointer that
was specified at the last call to fgluNurbsCallbackDataEXT.

The error callback function is effective no matter which value that GLU_NURBS MODE_EXT is set to.
All other calback functions are effective only when GLU _NURBS MODE _EXT is set to
GLU_NURBS _TESSELLATOR_EXT.

Thelegal callbacks are as follows:

GLU_NURBS BEGIN_EXT
The begin callback indicates the start of a primitive. The function takes a single argument of
type GLenum which can be one of GL_LINES  GL_LINE_STRIPS,
GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, GL_TRIANGLES, or
GL_QUAD_STRIP. The default begin callback function is NULL. The function prototype for
this callback looks like:
void begin ( GLenum type);

GLU_NURBS BEGIN_DATA_EXT
The same as the GLU_NURBS BEGIN_EXT callback except that it takes an additional
pointer argument. This pointer is a copy of the pointer that was specified at the last call to
fgluNurbsCallbackDataEXT. The default callback function is NULL. The function proto-
type for this callback function looks like:
void beginData (GLenum type, void * userData);

July 22, 1997



FGLUNURBSCALLBACK() UNIX System V FGLUNURBSCALLBACK()

GLU_NURBS VERTEX_EXT

The vertex callback indicates a vertex of the primitive. The coordinates of the vertex are stored
in the parameter "vertex". All the generated vertices have dimension 3, that is, homogeneous
coordinates have been transformed into affine coordinates. The default vertex callback func-
tionisNULL. The function prototype for this callback function looks like:

void vertex ( GLfloat *vertex );

GLU_NURBS VERTEX_DATA_EXT

The same as the GLU_NURBS VERTEX_EXT callback except that it takes an additional
pointer argument. This pointer is a copy of the pointer that was specified at the last call to
fgluNurbsCallbackDataEXT. The default callback function is NULL. The function proto-
type for this callback function looks like:

void vertexData ( GLfloat *vertex, void *userData );

GLU_NORMAL_EXT

The normal callback isinvoked as the vertex normal is generated. The components of the nor-
mal are stored in the parameter "normal”. In the case of aNURBS curve, the callback function
is effective only when the user provides a norma map (GL_MAPL1 NORMAL). In the case
of a NURBS surface, if a normal map (GL_MAP2 NORMAL) is provided, then the gen-
erated normal is computed from the normal map. If a normal map is not provided then a sur-
face normal is computed in a manner similar to that described for evaluators when
GL_AUTO_NORMAL isenabled. The default normal callback functionis NULL. The func-
tion prototype for this callback function looks like:

void normal ( GLfloat *normal );

GLU_NORMAL DATA_EXT

The same as the GLU_NURBS NORMAL_EXT callback except that it takes an additional
pointer argument. This pointer is a copy of the pointer that was specified at the last call to
fgluNurbsCallbackDataEXT. The default callback function is NULL. The function proto-
type for this callback function looks like:

void normalData ( GLfloat *normal, void *userData );

GLU_NURBS_COLOR_EXT

The color callback is invoked as the color of a vertex is generated. The components of the
color are stored in the parameter "color". This callback is effective only when the user pro-
videsacolor map (GL_MAP1 COLOR 4or GL_MAP2 COLOR_4). "color" contains four
components: R,G,B,A. The default color callback function is NULL. The prototype for this
callback function looks like:
void color ( GLfloat *color );

GLU_NURBS_COLOR_DATA_EXT

The same as the GLU_NURBS COLOR_EXT callback except that it takes an additional
pointer argument. This pointer is a copy of the pointer that was specified at the last call to
fgluNurbsCallbackDataEXT. The default callback function is NULL. The function proto-
type for this callback function looks like:

void colorData ( GLfloat *color, void *userData );

GLU_NURBS TEXTURE_COORD_EXT

July 22, 1997

The texture callback is invoked as the texture coordinates of a vertex are generated. These
coordinates are stored in the parameter "texCoord". The number of texture coordinates can be
1, 2, 3, or 4 depending on which type of texture map is specified
(GL_MAP*_TEXTURE_COORD 1, GL_MAP*_TEXTURE_COORD_2,
GL_MAP*_TEXTURE_COORD_3, GL_MAP*_TEXTURE_COORD_4 where * can be
either 1 or 2). If no texture map is specified, this callback function will not be called. The
default texture callback function is NULL. The function prototype for this callback function
lookslike:

Page 2



FGLUNURBSCALLBACK() UNIX System V FGLUNURBSCALLBACK()

void texCoord ( GLfloat *texCoord );

GLU_NURBS TEXTURE_COORD_DATA_EXT
The same as the GLU_NURBS TEXTURE_COORD_EXT callback except that it takes an
additional pointer argument. This pointer is a copy of the pointer that was specified at the last
call to fgluNurbsCallbackDataEXT. The default callback function is NULL. The function
prototype for this callback function looks like:
void texCoordData (GL float *texCoord, void *userData);

GLU_END_EXT
The end callback is invoked at the end of a primitive. The default end callback function is
NULL. The function prototype for this callback function looks like:
void end ( void );

GLU_END_DATA_EXT
The same as the GLU_NURBS TEXTURE_COORD_EXT callback except that it takes an
additional pointer argument. This pointer is a copy of the pointer that was specified at the last
cal to fgluNurbsCallbackDataEXT. The default callback function is NULL. The function
prototype for this callback function looks like:
void endData ( void *userData);

GLU_ERROR

The error function is called when an error is encountered. Its single argument is of type GLe-
num, and it indicates the specific error that occurred. There are 37 errors unique to NURBS
named GLU_NURBS ERROR1 through GLU_NURBS _ERROR37. Character strings
describing these errors can be retrieved with fgluError String.

SEE ALSO
fgluError String, fgluNewNur bsRender er

Page 3 July 22, 1997



FGLUNURBSCALLBACKDATAEXT() UNIX System V FGLUNURBSCALLBACKDATAEXT()

NAME
fgluNurbsCallbackDataEXT — set a user data pointer

FORTRAN SPECIFICATION
SUBROUTINE fgluNurbsCallbackDataEXT( CHARACTER*8 nurb,
CHARACTER*8 userData )

delim $$

PARAMETERS
nurb Specifies the NURBS object (created with fgluNewNurbsRender er).

userData Specifies a pointer to the user’s data.

DESCRIPTION
fgluNurbsCallbackDataEXT is used to pass a pointer to the application’s data to NURBS tessellator. A
copy of this pointer will be passed by the tessellator in the NURBS callback functions (set by fgluNurbs-
Callback).

SEE ALSO
fgluNurbsCallback

Page 1 July 22, 1997



FGLUNURBSCURVE() UNIX System V FGLUNURBSCURVE()

NAME

fgluNurbsCur ve — define the shape of aNURBS curve

FORTRAN SPECIFICATION

SUBROUTINE fgluNurbsCurve( CHARACTER*8 nurb,

INTEGER* 4 knotCount,
CHARACTER* 8 knots,
INTEGER*4 stride,
CHARACTER*8 contral,
INTEGER*4 order,
INTEGER*4 type)
delim $$
PARAMETERS
nurb Specifiesthe NURBS object (created with fgluNewNurbsRenderer).
knotCount Specifies the number of knots in knots. knotCount egquals the number of control points plus the
order.
knots Specifies an array of knotCount nondecreasing knot values.
stride Specifies the offset (as a number of single-precision floating-point values) between successive

curve control points.

control Specifies a pointer to an array of control points. The coordinates must agree with type, specified
below.

order Specifies the order of the NURBS curve. order equals degree + 1, hence a cubic curve has an
order of 4.

type Specifies the type of the curve. If this curve is defined within afgluBeginCurve/fgluEndCurve
pair, then the type can be any of the valid one-dimensional evaluator types (such as
GL_MAP1 VERTEX 3 or GL_MAP1_COLOR_4). Between a
fgluBeginTrim/fgluEndTrim pair, the only valid types are GLU_MAP1 TRIM_2 and
GLU_MAP1 TRIM_3.

DESCRIPTION

Use fgluNurbsCurve to describe a NURBS curve.

When fgluNurbsCurve appears between a fgluBeginCurve/fgluEndCurve pair, it is used to describe a
curve to be rendered. Positional, texture, and color coordinates are associated by presenting each as a
separate fgluNurbsCurve between a fgluBeginCurve/fgluEndCurve pair. No more than one call to
fgluNurbsCurve for each of color, position, and texture data can be made within a single
fgluBeginCurve/fgluEndCurve pair. Exactly one call must be made to describe the position of the curve
(atypeof GL_MAP1_VERTEX_3or GL_MAP1 VERTEX_4).

When fgluNurbsCurve appears between a fgluBeginTrim/fgluEndTrim pair, it is used to describe a
trimming curve on a NURBS surface. If typeis GLU_MAPL1 TRIM 2, then it describes a curve in two-
dimensional (u and v) parameter space. If it isGLU_MAPL1 TRIM 3, then it describes a curve in two-
dimensional homogeneous (u, v, and w) parameter space. See the fgluBeginTrim reference page for more
discussion about trimming curves.

EXAMPLE

Page 1

The following commands render a textured NURBS curve with normals:
gluBeginCurve(nobyj);

gluNurbsCurve(nobyj, ..., GL_MAPL TEXTURE_COORD _2);
gluNurbsCurve(nobj, ..., GL_MAP1 NORMAL);

July 22, 1997



FGLUNURBSCURVE() UNIX System V FGLUNURBSCURVE()

gluNurbsCurve(nobyj, ..., GL_MAPL_VERTEX_4); gluEndCurve(nobj);

NOTES
To define trim curves which stitch well, use fgluPwICurve.

SEE ALSO
fgluBeginCurve, fgluBeginTrim, fgluNewNurbsRenderer, fgluPwICurve

July 22, 1997 Page 2



FGLUNURBSPROPERTY () UNIX System V FGLUNURBSPROPERTY ()

NAME

fgluNurbsProperty — set aNURBS property

FORTRAN SPECIFICATION
SUBROUTINE fgluNur bsProperty( CHARACTER*8 nurb,

delim $$
PARAMETERS

nurb

INTEGER* 4 property,
REAL*4 value)

Specifies the NURBS object (created with fgluNewNurbsRenderer).

property Specifies the property to be set. Valid vaues are GLU SAMPLING_TOLERANCE,

value

DESCRIPTION

GLU_DISPLAY_MODE, GLU_CULLING, GLU_AUTO_LOAD_MATRIX,
GLU_PARAMETRIC_TOLERANCE, GLU _SAMPLING _METHOD, GLU_U_STEP,
GLU_V_STEP, or GLU_NURBS MODE_EXT.

Specifies the value of the indicated property. It may be a numeric vaue, or one of
GLU_OUTLINE_POLYGON, GLU FILL, GLU OUTLINE_PATCH, GL_TRUE,
GL_FALSE, GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR,
GLU_DOMAIN_DISTANCE, GLU_NURBS RENDERER_EXT, or
GLU_NURBS TESSELLATOR_EXT.

fgluNurbsProperty is used to control properties stored in a NURBS object. These properties affect the
way that a NURBS curve is rendered. The accepted values for property are as follows:

GLU_NURBS MODE_EXT

value should be set to be ether GLU_NURBS RENDERER_EXT or
GLU_NURBS TESSELLATOR_EXT. When set to
GLU_NURBS RENDERER_EXT, NURBS objects are tessellated into openGL primi-
tives and sent to the ©pipeline for rendering. When sat  to
GLU_NURBS TESSELLATOR_EXT, NURBS objects are tessellated into openGL
primitives but the vertices, normals, colors, and/or textures are retrieved back through a
callback interface (see fgluNurbsCallback). This allows the user to cache the tessel-
lated results for further processing.

GLU_SAMPLING_METHOD

Page 1

Specifies how a NURBS surface should be tessellated. value may be one of

GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR,
GLU_DOMAIN_DISTANCE,  GLU_OBJECT_PATH_LENGTH_EXT,  or
GLU_OBJECT_PARAMETRIC_ERROR_EXT. When set to

GLU_PATH_LENGTH, the surface is rendered so that the maximum length, in pixels,
of the edges of the tessdlation polygons is no greater than what is specified by
GLU_SAMPLING_TOLERANCE.

GLU PARAMETRIC_ERROR specifies that the surface is rendered in such a way
that the value specified by GLU PARAMETRIC_TOLERANCE describes the max-
imum distance, in pixels, between the tessellation polygons and the surfaces they
approximate.

GLU_DOMAIN_DISTANCE allows users to specify, in parametric coordinates, how
many sample points per unit length are taken in u, v direction.

GLU_OBJECT_PATH_LENGTH_EXT is smilar to GLU PATH_LENGTH
except that it is view independent, that is, the surface is rendered so that the maximum
length, in object space, of edges of the tessellation polygons is no greater than what is

July 22, 1997



FGLUNURBSPROPERTY () UNIX System V FGLUNURBSPROPERTY ()

specified by GLU_SAMPLING_TOLERANCE.

GLU_OBJECT_PARAMETRIC_ERROR_EXT is similar to
GLU_PARAMETRIC_ERROR except that it is view independent, that is, the surface
is rendered in such a way tha the value specified by
GLU_PARAMETRIC_TOLERANCE describes the maximum distance, in object
space, between the tessellation polygons and the surfaces they approximate.

The initial value of GLU_SAMPLING_METHOD isGLU_PATH_LENGTH.

GLU_SAMPLING_TOLERANCE
Specifies the maximum length, in pixels or in object space length unit, to use when the
sampling method is Set to GLU_PATH_LENGTH or
GLU OBJECT_PATH_LENGTH_EXT. The NURBS code is conservative when
rendering a curve or surface, so the actua length can be somewhat shorter. The initial
value is 50.0 pixels.

GLU_PARAMETRIC_TOLERANCE
Specifies the maximum distance, in pixels or in object space length unit, to use when the
sampling method is GLU_PARAMETRIC_ERROR or
GLU_OBJECT_PARAMETRIC_ERROR_EXT. Theinitia valueis0.5.

GLU_U_STEP Specifies the number of sample points per unit length taken along the u axis in
parametric coordinates. It is needed when GLU_SAMPLING_METHOD is set to
GLU_DOMAIN_DISTANCE. Theinitial valueis100.

GLU V_STEP Specifies the number of sample points per unit length taken along the v axis in
parametric coordinate. It is needed when GLU _SAMPLING_METHOD is set to
GLU_DOMAIN_DISTANCE. Theinitial valueis 100.

GLU_DISPLAY_MODE

value can be st to GLU OUTLINE POLYGON, GLU FILL, or
GLU_OUTLINE_PATCH. When GLU_NURBS MODE_EXT is set to be
GLU_NURBS RENDERER_EXT, value defines how a NURBS surface should be
rendered. When valueissetto GLU_FILL, the surface isrendered as a set of polygons.
When valueis set to GLU_OUTLINE_POLYGON, the NURBS library draws only the
outlines of the polygons created by tessdlation. When value is set to
GLU_OUTLINE_PATCH just the outlines of patches and trim curves defined by the
user are drawn.

When GLU_NURBS MODE_EXT is set to be
GLU_NURBS TESSELLATOR_EXT, value defines how a NURBS surface should be
tessellated.  When GLU DISPLAY MODE is st to GLUFILL or
GLU_OUTLINE_POLY, the NURBS surface is tessellated into openGL triangle prim-
itives which can be retrieved back through callback functions. If
GLU DISPLAY_MODE issetto GLU_OUTLINE_PATCH, only the outlines of the
patches and trim curves are generated as a sequence of line strips which can be retrieved
back through callback functions.

Theinitial valueisGLU_FILL.

GLU_CULLING
value is a boolean value that, when set to GL_TRUE, indicates that a NURBS curve
should be discarded prior to tessellation if its control points lie outside the current
viewport. Theinitial valueisGL_FAL SE.

GLU _AUTO_LOAD_MATRIX
value is a boolean value. When set to GL_TRUE, the NURBS code downloads the pro-
jection matrix, the modelview matrix, and the viewport from the GL server to compute

July 22, 1997 Page 2



FGLUNURBSPROPERTY () UNIX System V FGLUNURBSPROPERTY ()

NOTES

sampling and culling matrices for each NURBS curve that is rendered. Sampling and
culling matrices are required to determine the tessellation of a NURBS surface into line
segments or polygons and to cull aNURBS surface if it lies outside the viewport.

If this mode is set to GL_FALSE, then the program needs to provide a projection
matrix, a modelview matrix, and a viewport for the NURBS renderer to use to construct
sampling and culling matrices. This can be done with the fgluL oadSamplingM atrices
function. This mode is initially set to GL_TRUE. Changing it from GL_TRUE to
GL_FAL SE does not affect the sampling and culling matrices until fgluL oadSampling-
Matricesiscalled.

If GLU AUTO_LOAD_MATRIX istrue, sampling and culling may be executed incorrectly if NURBS
routines are compiled into adisplay list.

A property of GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD, GLU_U_STEP,
or GLU V_STEP, or a value of GLU PATH_LENGTH, GLU _PARAMETRIC_ERROR,
GLU_DOMAIN_DISTANCE are only available if the GLU version is 1.1 or greater. They are not valid
parametersin GLU 1.0.

foluGetString can be used to determine the GLU version.

SEE ALSO

Page 3

fgluGetNurbsProperty, fgluLoadSamplingMatrices, fgluNewNurbsRenderer, fgluGetString,
fgluNurbsCallback

July 22, 1997



FGLUNURBSSURFACE() UNIX System V FGLUNURBSSURFACE()

NAME

fgluNurbsSurface — define the shape of a NURBS surface

FORTRAN SPECIFICATION
SUBROUTINE fgluNurbsSurface( CHARACTER* 8 nurb,

delim $$

PARAMETERS

nurb

INTEGER* 4 sKknotCount,
CHARACTER*8 sKnots,
INTEGER* 4 tKnotCount,
CHARACTER*8 tKnots,
INTEGER*4 sStride,
INTEGER*4 tStride,
CHARACTER*8 control,
INTEGER* 4 sOrder,
INTEGER* 4 tOrder,
INTEGER*4 type)

Specifiesthe NURBS object (created with fgluNewNurbsRenderer).

sKnotCount Specifies the number of knotsin the parametric u direction.

sKnots

Specifies an array of sknotCount nondecreasing knot values in the parametric u direction.

tKnotCount Specifies the number of knotsin the parametric v direction.

tKnots
sStride

tSride

control

SOrder

tOrder

type

DESCRIPTION
Use fgluNurbsSurface within a NURBS (Non-Uniform Rational B-Spline) surface definition to describe
the shape of a NURBS surface (before any trimming). To mark the beginning of a NURBS surface
definition, use the fgluBeginSurface command. To mark the end of a NURBS surface definition, use the
fgluEndSurface command. Call fgluNur bsSurface within a NURBS surface definition only.

Page 1

Specifies an array of tKnotCount nondecreasing knot values in the parametric v direction.

Specifies the offset (as a number of single-precision floating point values) between successive
control pointsin the parametric u direction in control.

Specifies the offset (in single-precision floating-point values) between successive control
pointsin the parametric v direction in control.

Specifies an array containing control points for the NURBS surface. The offsets between suc-
cessive control pointsin the parametric u and v directions are given by sStride and tStride.

Specifies the order of the NURBS surface in the parametric u direction. The order is one more
than the degree, hence a surface that is cubic in u has au order of 4.

Specifies the order of the NURBS surface in the parametric v direction. The order is one more
than the degree, hence a surface that is cubic in v has av order of 4.

Specifies type of the surface. type can be any of the valid two-dimensiona evaluator types
(suchasGL_MAP2 VERTEX_3or GL_MAP2_COLOR_4).

Positional, texture, and color coordinates are associated with a surface by presenting each as a separate
fgluNurbsSurface between a fgluBeginSurface/fgluEndSurface pair. No more than one cal to
fgluNurbsSurface for each of color, position, and texture data can be made within a single
fogluBeginSurface/fgluEndSurface pair. Exactly one call must be made to describe the position of the sur-
face (atype of GL_MAP2_VERTEX_3or GL_MAP2 VERTEX_4).

July 22, 1997



FGLUNURBSSURFACE() UNIX System V FGLUNURBSSURFACE()

A NURBS surface can be trimmed by using the commands fgluNur bsCurve and fgluPwlCurve between
callstofgluBeginTrim and fgluEndTrim.

Note that a fgluNurbsSurface with sknotCount knots in the u direction and tKnotCount knots in the v
direction with orders sOrder and tOrder must have (sKnotCount - sOrder) $times$ (tKnotCount - tOrder)
control points.

EXAMPLE

The following commands render a textured NURBS surface with normals; the texture coordinates and nor-
mals are also NURBS surfaces:

gluBeginSurface(nobyj);
gluNurbsSurface(nobj, ..., GL_MAP2 TEXTURE_COORD_2);
gluNurbsSurface(nobj, ..., GL_MAP2 NORMAL);
gluNurbsSurface(nobj, ..., GL_MAP2 VERTEX_4); gluEndSurface(nohj);

SEE ALSO
fgluBeginSurface, fgluBeginTrim, fgluNewNurbsRenderer, fgluNurbsCurve, fgluPwICurve

July 22, 1997 Page 2



FGLUORTHO2D () UNIX System V FGLUORTHO2D ()

NAME
fgluOrtho2D - define a 2D orthographic projection matrix

FORTRAN SPECIFICATION
SUBROUTINE fgluOrtho2D( REAL* 8 left,
REAL*8 right,
REAL* 8 bottom,
REAL*8top)

delim $$

PARAMETERS
left, right
Specify the coordinates for the left and right vertical clipping planes.

bottom, top
Specify the coordinates for the bottom and top horizontal clipping planes.

DESCRIPTION
fgluOrtho2D sets up atwo-dimensional orthographic viewing region. Thisis equivaent to calling glOrtho
with$near =-1$and $far=1$.

SEE ALSO
glOrtho, fgluPer spective

Page 1 July 22, 1997



FGLUPARTIALDISK () UNIX System V FGLUPARTIALDISK ()

NAME
fgluPartialDisk — draw an arc of adisk

FORTRAN SPECIFICATION
SUBROUTINE fgluPartialDisk( CHARACTER* 8 quad,

REAL*8 inner,
REAL*8 outer,
INTEGER* 4 dlices,
INTEGER*4 loops,
REAL*8 start,
REAL*8 sweep )

delim $$

PARAMETERS
quad Specifies a quadrics object (created with fgluNewQuadric).

inner Specifies the inner radius of the partia disk (can be 0).

outer Specifies the outer radius of the partial disk.

slices Specifies the number of subdivisions around the z axis.

loops Specifies the number of concentric rings about the origin into which the partial disk is subdivided.
start Specifies the starting angle, in degrees, of the disk portion.

sweep
Specifies the sweep angle, in degrees, of the disk portion.
DESCRIPTION
fgluPartialDisk renders a partial disk onthe $z =0 $ plane. A partia disk is similar to afull disk, except
that only the subset of the disk from start through start + sweep is included (where O degrees is along the
+y axis, 90 degrees along the +x axis, 180 along the -y axis, and 270 along the —x axis).

The partial disk has aradius of outer, and contains a concentric circular hole with a radius of inner. If inner
is0, then no hole is generated. The partial disk is subdivided around the z axisinto slices (like pizza dlices),
and also about the z axisinto rings (as specified by slices and loops, respectively).

With respect to orientation, the +z side of the partial disk is considered to be outside (see fgluQuadri-
cOrientation). This means that if the orientation is set to GLU_OUTSIDE, then any normals generated
point along the +z axis. Otherwise, they point along the -z axis.

If texturing is turned on (with fgluQuadricTexture), texture coordinates are generated linearly such that
where $r = "outer" $, thevalue at (r, 0, 0) is (1.0, 0.5), at (O, r, 0) it is (0.5, 1.0), at (-r, 0, 0) it is (0.0, 0.5),
and at (O, -r, 0) itis (0.5, 0.0).

SEE ALSO
fgluCylinder, fgluDisk, fgluNewQuadric, fgluQuadricOrientation, fgluQuadricTexture, fgluSphere

Page 1 July 22, 1997



FGLUPERSPECTIVE() UNIX System V FGLUPERSPECTIVE()

NAME

fgluPer spective — set up a perspective projection matrix

FORTRAN SPECIFICATION

SUBROUTINE fgluPer spective( REAL*8 fovy,

REAL* 8 aspect,
REAL*8 zNear,
REAL*8 zFar )
delim $$
PARAMETERS

fowy  Specifiesthefield of view angle, in degrees, inthey direction.

aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the
ratio of x (width) toy (height).

ZNear Specifies the distance from the viewer to the near clipping plane (always positive).
ZFar  Specifies the distance from the viewer to the far clipping plane (always positive).

DESCRIPTION

NOTES

fgluPer spective specifies a viewing frustum into the world coordinate system. In general, the aspect ratio
in fgluPer spective should match the aspect ratio of the associated viewport. For example, $ "aspect” = 2.0
$ means the viewer's angle of view istwice aswidein x asitisiny. If the viewport istwice as wide as it
istal, it displays the image without distortion.

The matrix generated by fgluPer spective is multipled by the current matrix, just as if giIMultMatrix were
called with the generated matrix. To load the perspective matrix onto the current matrix stack instead, pre-
cede the call to fgluPer spective with acall to glL oadl dentity.

Given f defined as follows:
f =" cotangent"("{"fovy" over 2}")"
The generated matrix is

left (™ down 130 { matrix {
ccol { {f over "aspect"} above 0 above 0 above 0}
ccol { 0 above f above 0 above 0}
ccol { 0 above 0 above {{"zFar" + "zNear"} over {"zNear" - "zFar"}} above-1}
ccol { 0 above O above {{2* "zFar" * "zNear"} over {"zNear" - "zFar"}} above 0} }} " right)

Depth buffer precision is affected by the values specified for zZNear and zFar. The greater the ratio of zFar
to zNear is, the less effective the depth buffer will be at distinguishing between surfaces that are near each
other. If

$r7=""zFar" over "zNear"$

roughly $log sub 2 r$ bits of depth buffer precision are lost. Because $r$ approaches infinity as zZNear
approaches 0, zZNear must never be set to 0.

SEE ALSO

Page 1

glFrustum, glL oadl dentity, giMultM atrix, fgluOrtho2D

July 22, 1997



FGLUPICKMATRIX() UNIX System V FGLUPICKMATRIX ()

NAME
fgluPickM atrix — define a picking region

FORTRAN SPECIFICATION
SUBROUTINE fgluPickMatrix( REAL*8 x,

REAL*8Y,
REAL*8 del X,
REAL*8 delY,
CHARACTER*8 viewport )
delim $$
PARAMETERS
X, Y
Specify the center of a picking region in window coordinates.
delX, delY
Specify the width and height, respectively, of the picking region in window coordinates.
viewport
Specifies the current viewport (as from a glGetlntegerv call).
DESCRIPTION

fgluPickMatrix creates a projection matrix that can be used to restrict drawing to a small region of the
viewport. This is typically useful to determine what objects are being drawn near the cursor. Use fglu-
PickMatrix to restrict drawing to a small region around the cursor. Then, enter selection mode (with
glRenderMode) and rerender the scene. All primitives that would have been drawn near the cursor are
identified and stored in the selection buffer.

The matrix created by fgluPickMatrix is multiplied by the current matrix just as if giIMultMatrix is called
with the generated matrix. To effectively use the generated pick matrix for picking, first call glL oadlden-
tity to load an identity matrix onto the perspective matrix stack. Then call fgluPickMatrix, and finaly,
call acommand (such as fgluPer spective) to multiply the perspective matrix by the pick matrix.

When using fgluPickMatrix to pick NURBS, be careful to turn off the NURBS property
GLU_AUTO_LOAD_MATRIX. If GLU_AUTO_LOAD_MATRIX isnot turned off, then any NURBS
surface rendered is subdivided differently with the pick matrix than the way it was subdivided without the
pick matrix.

EXAMPLE
When rendering a scene as follows:

glMatrixMode(GL_PROJECTION); glLoadldentity(); gluPerspective(...);
glMatrixMode(GL_MODELVIEW); /* Draw the scene */

aportion of the viewport can be selected as a pick region like this:

glMatrixMode(GL_PROJECTION); glLoadldentity(); gluPickMatrix(x, y, width, height, viewport); glu-
Perspective(...); glMatrixMode(GL_MODELVIEW); /* Draw the scene */

SEE ALSO
glGet, glL oadl ndentity, gIMultM atrix, gilRender M ode, fgluPer spective

Page 1 July 22, 1997



FGLUPROJECT() UNIX System V FGLUPROJECT ()

NAME
fgluProject — map object coordinates to window coordinates

FORTRAN SPECIFICATION

INTEGER* 4 fgluProject( REAL*8 objX,
REAL*80bjY,
REAL*8 0bjZ,
CHARACTER*8 mode,
CHARACTER*8 proj,
CHARACTER*8 view,
CHARACTER*8 winX,
CHARACTER*8 winY,
CHARACTER*8winZ)

delim $$

PARAMETERS
objX, objY, objz
Specify the object coordinates.

model Specifies the current modelview matrix (as from a glGetDoublev cal).
proj Specifies the current projection matrix (as from aglGetDoublev call).
view Specifies the current viewport (as from a glGetl ntegerv call).

winX, winY, winZ
Return the computed window coordinates.

DESCRIPTION
fgluProject transforms the specified object coordinates into window coordinates using model, proj, and
view. Theresult is stored in winX, winY, and winZ. A return value of GL_TRUE indicates success, areturn
value of GL_FAL SE indicates failure.

To compute the coordinates, let $v = ("objX", "objY", "objZ", 1.0)$ represented as a matrix with 4 rows
and 1 column. Then fgluProject computes $v sup prime$ as follows:

vV sup prime"="P"times” M “times” v

where $P$ is the current projection matrix proj, $M$ is the current modelview matrix model (both
represented as $4 times 4% matrices in column-major order) and *$times$' represents matrix multiplication.

The window coordinates are then computed as follows:
"winX" "=""view" (0) "+ "view" (2) "*" (v sup prime (0) "+~ 1)7/2
"winY" "=""view" (1) "+ "view" (3)™"(v sup prime (1) "+~ 1)"/"2 .EN

"winZ" "=" (v sup prime (2) "+ 1)/ 2

SEE ALSO
olGet, fgluUnPr oj ect

Page 1 July 22, 1997



FGLUPWLCURVE() UNIX System V FGLUPWLCURVE()

NAME
fgluPwlICurve — describe a piecewise linear NURBS trimming curve

FORTRAN SPECIFICATION
SUBROUTINE fgluPwICurve( CHARACTER*8 nurb,

INTEGER* 4 count,
CHARACTER*8 data,
INTEGER* 4 stride,
INTEGER* 4 type)
delim $$
PARAMETERS

nurb  Specifiesthe NURBS object (created with fgluNewNurbsRenderer).

count Specifies the number of pointson the curve.

data Specifies an array containing the curve points.

stride Specifies the offset (a number of single-precision floating-point values) between points on the curve.
type Specifiesthetype of curve. Must be either GLU_MAP1 TRIM_2or GLU MAP1 TRIM_3.

DESCRIPTION
fgluPwICurve describes a piecewise linear trimming curve for a NURBS surface. A piecewise linear
curve consists of a list of coordinates of points in the parameter space for the NURBS surface to be
trimmed. These points are connected with line segments to form a curve. If the curve is an approximation
to acurve that is not piecewise linear, the points should be close enough in parameter space that the result-
ing path appears curved at the resolution used in the application.

If typeis GLU_MAPL TRIM_2, then it describes a curve in two-dimensional (u and v) parameter space.
If itis GLU_MAP1_TRIM_3, then it describes a curve in two-dimensiona homogeneous (u, v, and w)
parameter space. See the fgluBeginTrim reference page for more information about trimming curves.

NOTES
To describe atrim curve that closely follows the contours of a NURBS surface, call fgluNurbsCurve.

SEE ALSO
fgluBeginCurve, fgluBeginTrim, fgluNewNurbsRender er, fgluNur bsCurve

Page 1 July 22, 1997



FGLUQUADRICCALLBACK() UNIX System V FGLUQUADRICCALLBACK()

NAME
fgluQuadricCallback — define a callback for a quadrics object

FORTRAN SPECIFICATION
SUBROUTINE fgluQuadricCallback( CHARACTER* 8 quad,
INTEGER* 4 which,
CHARACTER*8 (CallBackFunc)( )

delim $$
PARAMETERS
quad Specifies the quadrics object (created with fgluNewQuadric).
which Specifies the callback being defined. The only valid valueisGLU_ERROR.
CallBackFunc Specifies the function to be called.
DESCRIPTION

fgluQuadricCallback is used to define a new callback to be used by a quadrics object. If the specified
callback is already defined, then it is replaced. If CallBackFunc is NULL, then any existing callback is
erased.

Theonelegal callback isGLU_ERROR:

GLU_ERROR Thefunction is caled when an error is encountered. Its single argument is of type GLe-
num, and it indicates the specific error that occurred. Character strings describing these
errors can be retrieved with the fgluError String call.

SEE ALSO
fogluError String, fgluNewQuadric

Page 1 July 22, 1997



FGLUQUADRICDRAWSTYLE() UNIX System V FGLUQUADRICDRAWSTYLE()

NAME
fgluQuadricDrawStyle — specify the draw style desired for quadrics

FORTRAN SPECIFICATION
SUBROUTINE fgluQuadricDrawStyle{ CHARACTER*8 quad,
INTEGER* 4 draw )

delim $$

PARAMETERS
quad Specifies the quadrics object (created with fgluNewQuadric).

draw Specifies the desired draw style. Valid valuesare GLU_FILL, GLU_LINE, GLU_SILHOUETTE,
and GLU_POINT.

DESCRIPTION
fgluQuadricDrawStyle specifies the draw style for quadrics rendered with quad. The legal values are as
follows:
GLU_FILL Quadrics are rendered with polygon primitives. The polygons are drawn in a counter-
clockwise fashion with respect to their normals (as defined with fgluQuadricOrienta-
tion).

GLU_LINE Quadrics are rendered as a set of lines.

GLU_SILHOUETTE
Quadrics are rendered as a set of lines, except that edges separating coplanar faces will
not be drawn.

GLU_POINT  Quadrics are rendered as a set of points.

SEE ALSO
fgluNewQuadric, fgluQuadricNormals, fgluQuadricOrientation, fgluQuadricTexture

Page 1 July 22, 1997



FGLUQUADRICNORMALS() UNIX System V FGLUQUADRICNORMALS()

NAME
fgluQuadricNormals — specify what kind of normals are desired for quadrics

FORTRAN SPECIFICATION
SUBROUTINE fgluQuadricNor mals( CHARACTER* 8 quad,
INTEGER*4 normal )

delim $$

PARAMETERS
quad  Specifesthe quadrics object (created with fgluNewQuadric).

normal Specifies the desired type of normas. Valid values are GLU NONE, GLU_FLAT, and
GLU_SMOOTH.

DESCRIPTION
fgluQuadricNormals specifies what kind of normals are desired for quadrics rendered with quad. The
legal values are asfollows:

GLU_NONE No normals are generated.
GLU_FLAT One normal is generated for every facet of a quadric.
GLU_SMOOTH One normal isgenerated for every vertex of aquadric. Thisistheinitial value.

SEE ALSO
fgluNewQuadric, fgluQuadricDrawStyle, fgluQuadricOrientation, fgluQuadricTexture

Page 1 July 22, 1997



FGLUQUADRICORIENTATION() UNIX System V FGLUQUADRICORIENTATION()

NAME
fgluQuadricOrientation — specify inside/outside orientation for quadrics

FORTRAN SPECIFICATION
SUBROUTINE fgluQuadricOrientation( CHARACTER* 8 quad,
INTEGER* 4 orientation )

delim $$

PARAMETERS
quad Specifies the quadrics object (created with fgluNewQuadric).

orientation Specifiesthe desired orientation. Valid values are GLU_OUTSIDE and GLU_INSIDE.

DESCRIPTION
fgluQuadricOrientation specifies what kind of orientation is desired for quadrics rendered with quad. The
orientation values are as follows:

GLU_OUTSIDE Quadrics are drawn with normals pointing outward (the initial value).
GLU_INSIDE  Quadrics are drawn with normals pointing inward.
Note that the interpretation of outward and inward depends on the quadric being drawn.

SEE ALSO
fgluNewQuadric, fgluQuadricDrawStyle, fgluQuadricNormals, fgluQuadricTexture

Page 1 July 22, 1997



FGLUQUADRICTEXTURE() UNIX System V FGLUQUADRICTEXTURE()

NAME
fgluQuadricTexture — specify if texturing is desired for quadrics

FORTRAN SPECIFICATION
SUBROUTINE fgluQuadricTexture( CHARACTER* 8 quad,
LOGICAL*1 texture)

delim $$

PARAMETERS
quad Specifies the quadrics object (created with fgluNewQuadric).

texture Specifiesaflagindicating if texture coordinates should be generated.

DESCRIPTION
fgluQuadricTextur e specifies if texture coordinates should be generated for quadrics rendered with quad.
If the value of texture is GL_TRUE, then texture coordinates are generated, and if textureis GL_FAL SE,
they are not. Theinitial valueisGL_FAL SE.

The manner in which texture coordinates are generated depends upon the specific quadric rendered.

SEE ALSO
fgluNewQuadric, fgluQuadricDrawStyle, fgluQuadricNor mals, fgluQuadricOrientation

Page 1 July 22, 1997



FGLUSCALEIMAGE() UNIX System V FGLUSCALEIMAGE()

NAME
fgluScalel mage - scale an image to an arbitrary size

FORTRAN SPECIFICATION

INTEGER* 4 fgluScalel mage( INTEGER* 4 format,
INTEGER*4 win,
INTEGER*4 hin,
INTEGER*4 typeln,
void dataln,
INTEGER*4 wOut,
INTEGER*4 hOut,
INTEGER*4 typeOut,
CHARACTER*8 dataOut )

delim $$

PARAMETERS
format Specifies the format of the pixel data The following symbolic values are vadlid:
GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

win, hin Specify the width and height, respectively, of the source image that is scaled.

typeln  Specifies the data type for dataln. Must be one of GL_UNSIGNED BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, or

GL_FLOAT.
dataln  Specifies a pointer to the source image.
wOut, hOut

Specify the width and height, respectively, of the destination image.

typeOut Specifies the data type for dataOut. Must be one of GL_UNSIGNED BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, or
GL_FLOAT.

dataOut Specifies a pointer to the destination image.

DESCRIPTION
fgluScalel mage scales a pixel image using the appropriate pixel store modes to unpack data from the
source image and pack data into the destination image.

When shrinking an image, fgluScalel mage uses a box filter to sample the source image and create pixels
for the destination image. When magnifying an image, the pixels from the source image are linearly inter-
polated to create the destination image.

A return value of 0 indicates success, otherwise a GLU error code isreturned (see fgluError String).

See the glReadPixels reference page for a description of the acceptable values for format, typeln, and
typeOut.

ERRORS
GLU_INVALID_VALUE isreturned if win, hin, wOut, or hOut are < 0.

GLU_INVALID_ENUM isreturned if format, typeln, or typeOut are not legal.

SEE ALSO
glDrawPixels, giReadPixels, fgluBuild1DMipmaps, fgluBuild2DMipmaps, fgluError String

Page 1 July 22, 1997



FGLUSPHERE() UNIX System V FGLUSPHERE()

NAME
fgluSpher e — draw a sphere

FORTRAN SPECIFICATION
SUBROUTINE fgluSphere{ CHARACTER* 8 quad,

REAL*8 radius,
INTEGER*4 dlices,
INTEGER*4 stacks)
delim $$
PARAMETERS

quad Specifiesthe quadrics object (created with fgluNewQuadric).

radius Specifies the radius of the sphere.

slices  Specifies the number of subdivisions around the z axis (similar to lines of longitude).
stacks Specifies the number of subdivisions along the z axis (similar to lines of latitude).

DESCRIPTION

fgluSpher e draws a sphere of the given radius centered around the origin. The sphere is subdivided around
the zaxis into slices and along the z axis into stacks (similar to lines of longitude and latitude).

If the orientation is set to GLU_OUTSIDE (with fgluQuadricOrientation), then any normals generated
point away from the center of the sphere. Otherwise, they point toward the center of the sphere.

If texturing isturned on (with fgluQuadricT exture), then texture coordinates are generated so that t ranges
from 0.0 at $ z = -"radius’ $to 1.0 at $ z = "radius’ $ (t increases linearly along longitudinal lines), and s
ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the —y axis, to 0.75 at the —x axis, and back to
1.0 at the +y axis.

SEE ALSO
fgluCylinder, fgluDisk, fgluNewQuadric, fgluPartialDisk, fgluQuadricOrientation, fgluQuadricT ex-
ture

Page 1 July 22, 1997



FGLUTESSBEGINCONTOUR() UNIX System V FGLUTESSBEGINCONTOUR()

NAME
fgluTessBeginContour, fgluTessEndContour — delimit a contour description

FORTRAN SPECIFICATION
SUBROUTINE fgluTessBeginContour ( CHARACTER* 8 tess )

SUBROUTINE fgluTessEndContour( CHARACTER*8 tess)

delim $$

PARAMETERS
tess Specifiesthe tessellation object (created with fgluNewT ess).

DESCRIPTION
fgluTessBeginContour and fgluTessEndContour delimit the definition of a polygon contour. Within each
fgluTessBeginContour/fgluTessEndContour pair, there can be zero or more calls to fgluTessVertex.
The vertices specify a closed contour (the last vertex of each contour is automatically linked to the first).
See the fgluTessVertex reference page for more details. fgluTessBeginContour can only be called
between fgluTessBeginPolygon and fgluT essEndPolygon.

SEE ALSO

fgluNewTess, fgluTessBeginPolygon, fgluTessVertex, fgluTessCallback, fgluTessProperty, fglu-
TessNormal, fgluTessEndPolygon

Page 1 July 22, 1997



FGLUTESSBEGINPOLY GON(() UNIX System V FGLUTESSBEGINPOLY GON()

NAME
fgluT essBeginPolygon — delimit a polygon description

FORTRAN SPECIFICATION
SUBROUTINE fgluT essBeginPolygon( CHARACTER* 8 tess,
CHARACTER*8 data )

delim $$

PARAMETERS
tess Specifiesthe tessellation object (created with fgluNewT ess).

data
Specifies a pointer to user polygon data.

DESCRIPTION
fgluTessBeginPolygon and fgluTessEndPolygon delimit the definition of a convex, concave or self-
intersecting polygon. Within each fgluT essBeginPolygon/fgluT essEndPolygon pair, there must be one or
more calls to fgluTessBeginContour/fgluTessEndContour. Within each contour, there are zero or more
callsto fgluTessVertex. The vertices specify a closed contour (the last vertex of each contour is automati-
caly linked to the first). See the fgluTessVertex, fgluTessBeginContour, and fgluT essEndContour refer-
ence pages for more details.

data is a pointer to a user-defined data structure. If the appropriate callback(s) are specified (see fgluTess-
Callback), then this pointer is returned to the callback function(s). Thus, it is a convenient way to store
per-polygon information.

Once fgluTessEndPolygon is called, the polygon is tessellated, and the resulting triangles are described
through callbacks. See fgluTessCallback for descriptions of the callback functions.

EXAMPLE
A quadrilateral with atriangular holein it can be described as follows:

gluTessBeginPolygon(tobj, NULL);
gluTessBeginContour(tobj);
gluTessVertex(tobj, v1, v1);
gluTessVertex(tobj, v2, v2);
gluTessVertex(tobj, v3, v3);
gluTessVertex(tobj, v4, v4);
gluTessEndContour(tohj);
gluTessBeginContour(tobj);
gluTessVertex(tobj, v5, v5);
gluTessVertex(tobj, v6, v6);
gluTessVertex(tobj, v7, v7);
gluTessEndContour(tobj); gluTessEndPolygon(tohj);

SEE ALSO
fgluNewTess, fgluTessBeginContour, fgluTessVertex, fgluTessCallback, fgluTessProperty, fglu-
TessNormal, fgluTessEndPolygon

Page 1 July 22, 1997



FGLUTESSCALLBACK() UNIX System V FGLUTESSCALLBACK()

NAME

fgluTessCallback — define a callback for atessellation object

FORTRAN SPECIFICATION

SUBROUTINE fgluTessCallback( CHARACTER*8 tess,
INTEGER* 4 which,
CHARACTER*8 (CallBackFunc)( )

delim $$
PARAMETERS
tess Specifies the tessellation object (created with fgluNewT ess).
which Specifies the callback being defined. The following values are valid:
GLU_TESS BEGIN, GLU _TESS BEGIN DATA, GLU_TESS EDGE_FLAG,
GLU_TESS EDGE_FLAG_DATA, GLU_TESS VERTEX,

GLU_TESS VERTEX_DATA,  GLU TESS END, GLU_TESS END _DATA,
GLU_TESS COMBINE, GLU_TESS COMBINE_DATA, GLU_TESS ERROR, and
GLU_TESS ERROR_DATA.

CallBackFunc Specifies the function to be called.

DESCRIPTION

Page 1

fgluTessCallback is used to indicate a callback to be used by atessellation object. If the specified callback
is aready defined, then it is replaced. If CallBackFunc is NULL, then the existing callback becomes
undefined.

These callbacks are used by the tessellation object to describe how a polygon specified by the user is bro-
ken into triangles. Note that there are two versions of each callback: one with user-specified polygon data
and one without. If both versions of a particular callback are specified, then the callback with user-specified
polygon data will be used. Note that the polygon_data parameter used by some of the functionsisa copy of
the pointer that was specified when fgluT essBeginPolygon was called. The legal callbacks are asfollows:

GLU_TESS BEGIN

The begin callback is invoked like glBegin to indicate the start of a (triangle) primitive. The
function takes a single argument of type GLenum. If the GLU_TESS BOUNDARY_ONLY
property is set to GL_FALSE, then the argument is set to either GL_TRIANGLE_FAN,
GL_TRIANGLE_STRIP, or GL_TRIANGLES. If the GLU_TESS BOUNDARY_ONLY
property is set to GL_TRUE, then the argument will be set to GL_LINE_L OOP. The func-
tion prototype for this callback is:

void begin ( GLenum type);

GLU_TESS BEGIN_DATA
The same asthe GLU_TESS BEGIN callback except that it takes an additional pointer argu-
ment. This pointer is identical to the opaque pointer provided when fgluTessBeginPolygon
was called. The function prototype for this callback is:
void beginData ( GLenum type, void *polygon_data);

GLU_TESS EDGE_FLAG
The edge flag callback is similar to glEdgeFlag. The function takes a single boolean flag that
indicates which edges lie on the polygon boundary. If the flag is GL_TRUE, then each vertex
that follows begins an edge that lies on the polygon boundary, that is, an edge that separates an
interior region from an exterior one. If the flag is GL_FAL SE, then each vertex that follows
begins an edge that lies in the polygon interior. The edge flag callback (if defined) is invoked
before the first vertex callback.

July 22, 1997



FGLUTESSCALLBACK() UNIX System V FGLUTESSCALLBACK()

Since triangle fans and triangle strips do not support edge flags, the begin callback is not called
with GL_TRIANGLE_FAN or GL_TRIANGLE_STRIP if anon-NULL edge flag callback
is provided. (If the callback is initialized to NULL, there is no impact on performance).
Instead, the fans and strips are converted to independent triangles. The function prototype for
this callback is:

void edgeFlag ( GLboolean flag );

GLU_TESS EDGE_FLAG_DATA
The same as the GLU_TESS EDGE_FLAG calback except that it takes an additional
pointer argument. This pointer is identical to the opague pointer provided when fgluTessBe-
ginPolygon was called. The function prototype for this callback is:
void edgeFlagData ( GLboolean flag, void * polygon_data);

GLU_TESS VERTEX
The vertex callback isinvoked between the begin and end callbacks. It is similar to glVertex,
and it defines the vertices of the triangles created by the tessellation process. The function
takes a pointer as its only argument. This pointer is identical to the opague pointer provided
by the user when the vertex was described (see fgluTessVertex). The function prototype for
this callback is:
void vertex ( void *vertex_data);

GLU_TESS VERTEX_DATA
The same as the GLU_TESS VERTEX callback except that it takes an additional pointer
argument. This pointer is identical to the opague pointer provided when fgluTessBeginPo-
lygon was called. The function prototype for this callback is:
void vertexData ( void *vertex_data, void *polygon_data);

GLU_TESS END
The end callback serves the same purpose as glEnd. It indicates the end of a primitive and it
takes no arguments. The function prototype for this callback is:
void end ( void);

GLU_TESS END_DATA
The same as the GLU_TESS_END callback except that it takes an additional pointer argu-
ment. This pointer is identical to the opaque pointer provided when fgluTessBeginPolygon
was called. The function prototype for this callback is:
void endData ( void * polygon_data);

GLU_TESS COMBINE
The combine callback is called to create a new vertex when the tessellation detects an intersec-
tion, or wishes to merge features. The function takes four arguments: an array of three ele-
ments each of type GLdouble, an array of four pointers, an array of four el ements each of type
GLfloat, and a pointer to a pointer. The prototypeis:
void combine( GLdouble coordd[3], void *vertex_data]4],
GL float weight[4], void **outData);

The vertex is defined as a linear combination of up to four existing vertices, stored in
vertex_data. The coefficients of the linear combination are given by weight; these weights
always add upto 1. All vertex pointers are valid even when some of the weights are 0. coords
gives the location of the new vertex.

The user must alocate another vertex, interpolate parameters using vertex_data and weight,
and return the new vertex pointer in outData. This handle is supplied during rendering call-
backs. The user is responsible for freeing the memory some time after fgluTessEndPolygon
iscalled.

For example, if the polygon liesin an arbitrary plane in 3-space, and a color is associated with
each vertex, the GLU_TESS_COM BINE callback might look like this:

July 22, 1997 Page 2



FGLUTESSCALLBACK() UNIX System V FGLUTESSCALLBACK()

EXAMPLE
Polygons tessellated can be rendered directly like this:

Page 3

void myCombine( GLdouble coordg[3], VERTEX *d[4],
GLfloat w[4], VERTEX **dataOut ) {
VERTEX *new = new_vertex();

new->x = coordg[Q];

new->y = coordg[1];

new->z = coords[2];

new->r = w[0]*d[0]->r + w[1]*d[1]->r + w[2]*d[2]->r + w[3]*d[3]->T;
new->g = w[0]*d[0]->g + w[1]*d[1]->g + w[2]*d[2]->g + w[3]*d[3]->g;
new->b = w[0]*d[0]->b + w[1]*d[1]->b + w[2]*d[2]->b + w[3]*d[3]->b;
new->a = w[0]*d[0]->a + w[1]*d[1]->a + w[2]*d[2]->a + w[3]*d[3]->3;
*dataOut = new; }

If the tessellation detects an intersection, then the GLU_TESS COMBINE or
GLU_TESS COMBINE_DATA callback (see below) must be defined, and it must write a
non-NULL pointer into dataOut. Otherwise the
GLU_TESS NEED_COMBINE_CALLBACK error occurs, and no output is generated.

GLU_TESS COMBINE_DATA

The same as the GLU_TESS COMBINE callback except that it takes an additional pointer
argument. This pointer is identical to the opague pointer provided when fgluTessBeginPo-
lygon was called. The function prototype for this callback is:
void combineData ( GLdouble coords[3], void *vertex_data[4],

GL float weight[4], void **outData,

void *polygon_data);

GLU_TESS ERROR

The error callback is called when an error is encountered. The one argument is of type GLe-
num; it indicates the specific error that occurred and will be set to one of
GLU_TESS MISSING_BEGIN_POLYGON, GLU_TESS MISSING_END_POLYGON,
GLU_TESS MISSING_BEGIN_CONTOUR, GLU_TESS MISSING_END_CONTOUR,
GLU_TESS COORD_TOO_LARGE, GLU TESS NEED_COMBINE_CALLBACK or
GLU OUT_OF MEMORY. Character strings describing these errors can be retrieved with
the fgluError String call. The function prototype for this callback is:

void error ( GLenum errno );

The GLU library will recover from the first four errors by inserting the missing call(s).
GLU_TESS COORD_TOO_LARGE indicates that some vertex coordinate exceeded the
predefined constant GLU_TESS MAX_COORD in absolute value, and that the value has
been clamped. (Coordinate values must be small enough so that two can be multiplied together
without overflow.) GLU_TESS NEED_COMBINE_CALLBACK indicates that the tessel-
lation detected an intersection between two edges in the input data, and the
GLU_TESS COMBINE or GLU_TESS COMBINE_DATA callback was not provided. No
output is generated. GLU_OUT_OF _MEMORY indicates that there is not enough memory
SO no output is generated.

GLU_TESS ERROR_DATA

Thesameasthe GLU_TESS ERROR callback except that it takes an additional pointer argu-
ment. This pointer is identical to the opaque pointer provided when fgluTessBeginPolygon
was called. The function prototype for this callback is:
void errorData ( GLenum errno, void * polygon_data);

gluTessCallback(tobj, GLU_TESS BEGIN, glBegin); gluTessCallback(tobj, GLU_TESS VERTEX,

July 22, 1997



FGLUTESSCALLBACK() UNIX System V FGLUTESSCALLBACK()

glVertex3dv); gluTessCallback(tobyj, GLU_TESS END, olEnd); gluTessCallback(tobyj,
GLU_TESS _COMBINE, myCombine); gluTessBeginPolygon(tobj, NULL);
gluTessBeginContour(tobj);
gluTessVertex(tobj, v, v);

gluTessEndContour(tobj); gluTessEndPolygon(tobj);

Typicaly, the tessellated polygon should be stored in a display list so that it does not need to be retessel-
lated every timeit isrendered.

SEE ALSO
glBegin, glEdgeFlag, glVertex, fgluNewTess, fgluError String, fgluTessVertex, fgluTessBeginPolygon,
fgluTessBeginContour, fgluTessProperty, fgluTessNor mal

July 22, 1997 Page 4



FGLUTESSENDPOLYGON() UNIX System V FGLUTESSENDPOLYGON()

NAME
fgluTessEndPolygon — delimit a polygon description

FORTRAN SPECIFICATION
SUBROUTINE fgluTessEndPolygon( CHARACTER* 8 tess)

delim $$

PARAMETERS
tess Specifiesthe tessellation object (created with fgluNewT ess).

DESCRIPTION
fgluTessBeginPolygon and fgluTessEndPolygon delimit the definition of a convex, concave or self-
intersecting polygon. Within each fgluT essBeginPolygon/fgluT essEndPolygon pair, there must be one or
more calls to fgluTessBeginContour/fgluTessEndContour. Within each contour, there are zero or more
callsto fgluTessVertex. The vertices specify a closed contour (the last vertex of each contour is automati-
caly linked to the first). See the fgluTessVertex, fgluT essBeginContour and fgluTessEndContour refer-
ence pages for more details.

Once fgluTessEndPolygon is called, the polygon is tessellated, and the resulting triangles are described
through callbacks. See fgluTessCallback for descriptions of the callback functions.

EXAMPLE
A quadrilateral with atriangular holein it can be described like this:

gluTessBeginPolygon(tobj, NULL);
gluTessBeginContour(tobyj);
gluTessVertex(tobj, v1, v1);
gluTessVertex(tobj, v2, v2);
gluTessVertex(tobj, v3, v3);
gluTessVertex(tobj, v4, v4);
gluTessEndContour(tobj);
gluTessBeginContour(tobyj);
gluTessVertex(tobj, v5, v5);
gluTessVertex(tobj, v6, v6);
gluTessVertex(tobj, v7, v7);
gluTessEndContour(tobj); gluTessEndPolygon(tobj);

In the above example the pointers, $v13$ through $v73, should point to different addresses, since the values
stored at these addresses will not be read by the tesselator until fgluT essEndPolygon is called.

SEE ALSO
fgluNewTess, fgluTessBeginContour, fgluTessVertex, fgluTessCallback, fgluTessProperty, fglu-
TessNormal, fgluTessBeginPolygon

Page 1 July 22, 1997



FGLUTESSNORMAL () UNIX System V FGLUTESSNORMAL ()

NAME
fgluTessNormal — specify anormal for a polygon

FORTRAN SPECIFICATION
SUBROUTINE fgluTessNormal( CHARACTER* 8 tess,

REAL*8 valueX,
REAL*8 valueY,
REAL*8 valueZ )
delim $$
PARAMETERS

tess  Specifiesthe tessallation object (created with fgluNewT ess).
valueX Specifies the first component of the normal.

valueY Specifies the second component of the normal.

valueZ Specifies the third component of the normal.

DESCRIPTION
fgluTessNor mal describes a normal for a polygon that the program is defining. All input data will be pro-
jected onto a plane perpendicular to one of the three coordinate axes before tessellation and all output trian-
gles will be oriented CCW with respect to the norma (CW orientation can be obtained by reversing the
sign of the supplied normal). For example, if you know that all polygons lie in the x-y plane, call
fgluTessNor mal(tess, 0.0, 0.0, 1.0) before rendering any polygons.

If the supplied normal is (0.0, 0.0, 0.0) (the initial value), the normal is determined as follows. The direc-
tion of the normal, up to its sign, is found by fitting a plane to the vertices, without regard to how the ver-
tices are connected. It is expected that the input data lies approximately in the plane; otherwise, projection
perpendicular to one of the three coordinate axes may substantially change the geometry. The sign of the
normal is chosen so that the sum of the signed areas of all input contours is nonnegative (where a CCW
contour has positive area).

The supplied normal persists until it is changed by another call to fgluTessNormal.

SEE ALSO
fogluTessBeginPolygon, fgluTessEndPolygon

Page 1 July 22, 1997



FGLUTESSPROPERTY ()

NAME

UNIX System V FGLUTESSPROPERTY ()

fgluTessProperty — set atessellation object property

FORTRAN SPECIFICATION
SUBROUTINE fgluTessProperty( CHARACTER* 8 tess,

delim $$
PARAMETERS

INTEGER*4 which,
REAL*8 data)

tess  Specifies the tessellation object (created with fgluNewT ess).

which Specifies

the property to be set. Valid vaues are GLU_TESS WINDING_RULE,

GLU_TESS BOUNDARY_ONLY, GLU_TESS TOLERANCE.
data Specifiesthe value of the indicated property.

DESCRIPTION

fgluTessProperty is used to control properties stored in a tessellation object. These properties affect the
way that the polygons are interpreted and rendered. The legal values for which are as follows:

GLU_TESS WINDING_RULE

Determines which parts of the polygon are on the "interior”. data may be set to one of
GLU_TESS WINDING_ODD, GLU_TESS WINDING_NONZERO,
GLU_TESS WINDING_POSITIVE, or GLU_TESS WINDING_NEGATIVE, or
GLU_TESS WINDING_ABS GEQ_TWO.

To understand how the winding rule works, consider that the input contours partition the
plane into regions. The winding rule determines which of these regions are inside the

polygon.

For a single contour C, the winding number of a point x is simply the signed number of
revolutions we make around x as we travel once around C (where CCW is positive).
When there are several contours, the individual winding numbers are summed. This pro-
cedure associates a signed integer value with each point x in the plane. Note that the
winding number isthe same for all pointsin asingle region.

The winding rule classifies a region as "inside" if its winding number belongs to the
chosen category (odd, nonzero, positive, negative, or absolute value of at least two). The
previous GLU tessellator (prior to GLU 1.2) used the "odd" rule. The "nonzero" rule is
another common way to define the interior. The other three rules are useful for polygon
CSG operations.

GLU_TESS BOUNDARY_ONLY

Is a boolean value ("value" should be set to GL_TRUE or GL_FALSE). When set to
GL_TRUE, a set of closed contours separating the polygon interior and exterior are
returned instead of atessellation. Exterior contours are oriented CCW with respect to the
normal; interior contours are oriented CW. The GLU _TESS BEGIN and
GLU_TESS BEGIN_DATA callbacks use the type GL_LINE_LOOP for each con-
tour.

GLU_TESS TOLERANCE

Page 1

Specifies a tolerance for merging features to reduce the size of the output. For example,
two vertices that are very close to each other might be replaced by a single vertex. The
tolerance is multiplied by the largest coordinate magnitude of any input vertex; this
specifies the maximum distance that any feature can move as the result of a single merge
operation. If a single feature takes part in several merge operations, the total distance

July 22, 1997



FGLUTESSPROPERTY ()

SEE ALSO

UNIX System V FGLUTESSPROPERTY ()

moved could be larger.

Feature merging is completely optional; the tolerance is only a hint. The implementation
is free to merge in some cases and not in others, or to never merge features at all. The
initial tolerance isO.

The current implementation merges vertices only if they are exactly coincident, regard-
less of the current tolerance. A vertex is spliced into an edge only if the implementation
is unable to distinguish which side of the edge the vertex lies on. Two edges are merged
only when both endpoints are identical.

fgluGetTessProperty

July 22, 1997

Page 2



FGLUTESSVERTEX() UNIX System V FGLUTESSVERTEX()

NAME

fgluTessVertex — specify avertex on a polygon

FORTRAN SPECIFICATION

SUBROUTINE fgluTessVertex( CHARACTER* 8 tess,
CHARACTER*8 location,
CHARACTER*8 data )

delim $$

PARAMETERS

tess Specifies the tessellation object (created with fgluNewT ess).
location Specifies the location of the vertex.

data Specifies an opague pointer passed back to the program with the vertex callback (as specified by
fgluT essCallback).

DESCRIPTION

fgluTessVertex describes a vertex on a polygon that the program defines. Successive fgluTessVertex calls
describe a closed contour. For example, to describe a quadrilateral fgluTessVertex should be called four
times. fgluTessVertex can only be called between fgluTessBeginContour and fgluTessEndContour.

data normally points to a structure containing the vertex location, as well as other per-vertex attributes such
as color and normal. This pointer is passed back to the user through the GLU TESS VERTEX or
GLU_TESS VERTEX_DATA callback after tessellation (see the fgluT essCallback reference page).

EXAMPLE

NOTES

Page 1

A quadrilateral with atriangular holein it can be described as follows:

gluTessBeginPolygon(tobj, NULL);
gluTessBeginContour(tobj);
gluTessVertex(tobj, v1, v1);
gluTessVertex(tobj, v2, v2);
gluTessVertex(tobj, v3, v3);
gluTessVertex(tobj, v4, v4);
gluTessEndContour(tohj);
gluTessBeginContour(tobj);
gluTessVertex(tobj, v5, v5);
gluTessVertex(tobj, v6, v6);
gluTessVertex(tobj, v7, v7);
gluTessEndContour(tobj); gluTessEndPolygon(tohj);

It is a common error to use a local variable for location or data and store values into it as part of a loop.
For example: for (i = 0; i < NVERTICES; ++i) {

GLdouble data[ 3];

data[0] = vertex[i][0];

data[1] = vertex[i][1];

data[2] = vertex[i][2];

gluTessVertex(tobj, data, data);

}

This doesn’'t work. Because the pointers specified by location and data might not be dereferenced until
fgluTessEndPolygon is executed, all the vertex coordinates but the very last set could be overwritten
before tessellation begins.

July 22, 1997



FGLUTESSVERTEX() UNIX System V FGLUTESSVERTEX()

Two common symptoms of this problem are consists of a single point (when a local variable is used for
data) and aGLU_TESS NEED_COMBINE_CALLBACK error (when alocal variable is used for loca-
tion).

SEE ALSO
fgluTessBeginPolygon, fgluNewTess, fgluTessBeginContour, fgluTessCallback, fgluTessProperty,
fgluTessNor mal, fgluTessEndPolygon

July 22, 1997 Page 2



FGLUUNPROJECT () UNIX System V FGLUUNPROJECT ()

NAME
fgluUnPr oj ect — map window coordinates to object coordinates

FORTRAN SPECIFICATION

INTEGER* 4 fgluUnPr oject( REAL*8 winX,
REAL*8winY,
REAL*8winz,
CHARACTER*8 mode,
CHARACTER*8 proj,
CHARACTER*8 view,
CHARACTER*8 objX,
CHARACTER*8 ohjY,
CHARACTER*8 0bjZ)

delim $$

PARAMETERS
winX, winY, winZ
Specify the window coordinates to be mapped.

model Specifies the modelview matrix (as from aglGetDoublev call).
proj Specifies the projection matrix (as from aglGetDoublev call).
view Specifies the viewport (as from a glGetl ntegerv call).

objX, objY, objZ Returns the computed object coordinates.

DESCRIPTION
fgluUnPr oj ect maps the specified window coordinates into object coordinates using model, proj, and view.
The result is stored in objX, objY, and objZ. A return value of GL_TRUE indicates success; areturn value
of GL_FALSE indicates failure.

To compute the coordinates (objX, objY, and objZ), fgluUnProject multiplies the normalized device coor-
dinates by the inverse of model* proj as follows:

left ( down 70 {cpile{ ™objX" above ™objY" above ™ objZ"
above "W}} T right ) =" INV(P M) left ( down 140 {cpile { { {2("winX" "~ "view"[0])} over {"view"
[2]} =" 1} above { {2("winY" ~-" "view"[1])} over {"view"[3]} "~ 1} above { 2("winZ") "-" 1} above
1}} “right)

$INV()$ denotes matrix inversion. W is an unused variable, included for consistent matrix notation.

SEE ALSO
olGet, fgluProject

Page 1 July 22, 1997



