FGLACCUM() UNIX System V FGLACCUM()

NAME

fglAccum — operate on the accumulation buffer

FORTRAN SPECIFICATION

SUBROUTINE fglAccum(INTEGER*4 op,
REAL*4 value)

delim $$

PARAMETERS

op Specifies the accumulation buffer operation. Symbolic constants GL_ACCUM, GL_LOAD,
GL_ADD, GL_MULT, and GL_RETURN are accepted.

value Specifies a floating-point value used in the accumulation buffer operation. op determines how value
is used.

DESCRIPTION

Page 1

The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rather,
images rendered into one of the color buffers are added to the contents of the accumulation buffer after
rendering. Effects such as antialiasing (of points, lines, and polygons), motion blur, and depth of field can
be created by accumulating images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha values. The number of bits
per component in the accumulation buffer depends on the implementation. Y ou can examine this number
by cdling fglGetintegerv four times, with arguments GL_ACCUM_RED BITS
GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS, ad GL_ACCUM_ALPHA_BITS.
Regardless of the number of bits per component, the range of values stored by each component is [-1, 1].
The accumulation buffer pixels are mapped one-to-one with frame buffer pixels.

fglAccum operates on the accumulation buffer. The first argument, op, is a symbolic constant that selects
an accumulation buffer operation. The second argument, value, is a floating-point value to be used in that
operation. Five operations are specified: GL_ACCUM, GL _LOAD, GL_ADD, GL_MULT, and
GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and applied identically
to the red, green, blue, and alpha components of each pixel. If afglAccum operation resultsin avalue out-
side the range [-1, 1], the contents of an accumulation buffer pixel component are undefined.

The operations are as follows:

GL_ACCUM Onbtains R, G, B, and A vaues from the buffer currently selected for reading (see
fglReadBuffer). Each component value is divided by $2 sup n™-"13$, where n is the
number of bits alocated to each color component in the currently selected buffer. The
result is a floating-point value in the range [0, 1], which is multiplied by value and added
to the corresponding pixel component in the accumulation buffer, thereby updating the
accumul ation buffer.

GL_LOAD Similar to GL_ACCUM, except that the current value in the accumulation buffer is not
used in the calculation of the new value. That is, the R, G, B, and A values from the
currently selected buffer are divided by $ 2 sup n™-"1$, multiplied by value, and then
stored in the corresponding accumulation buffer cell, overwriting the current value.

GL_ADD Addsvalueto each R, G, B, and A in the accumulation buffer.

GL_MULT Multiplieseach R, G, B, and A in the accumulation buffer by value and returns the scaled
component to its corresponding accumulation buffer location.

GL_RETURN Transfers accumulation buffer values to the color buffer or buffers currently selected for
writing. Each R, G, B, and A component is multiplied by value, then multiplied by $ 2

July 22, 1997

FGLACCUM() UNIX System V FGLACCUM()

sup n™-"1$, clamped to the range [0,$ 2 sup n"™-"1 $], and stored in the corresponding
display buffer cell. The only fragment operations that are applied to thistransfer are pixel
ownership, scissor, dithering, and color writemasks.

To clear the accumulation buffer, call fglClear Accum with R, G, B, and A values to set it to, then call
fglClear with the accumulation buffer enabled.

NOTES
Only pixels within the current scissor box are updated by afglAccum operation.

ERRORS
GL_INVALID_ENUM isgenerated if op is not an accepted value.

GL_INVALID_OPERATION isgenerated if there is no accumulation buffer.

GL_INVALID_OPERATION is generated if fglAccum is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_ACCUM_RED_BITS
fglGet with argument GL_ACCUM_GREEN_BITS
fglGet with argument GL_ACCUM_BLUE_BITS
fglGet with argument GL_ACCUM_ALPHA_BITS

SEE ALSO
fglBlendFunc, fglClear, fglClear Accum, fglCopyPixels, fglGet, fglLogicOp, fglPixelStore, fglPixel-
Transfer, fglReadBuffer, fglReadPixels, fglScissor, fglStencilOp

July 22, 1997 Page 2

FGLALPHAFUNC() UNIX System V FGLALPHAFUNC()

NAME
fglAlphaFunc — specify the alpha test function

FORTRAN SPECIFICATION
SUBROUTINE fglAlphaFunc(INTEGER*4 func,
REAL*4 ref)

PARAMETERS
func Specifies the apha comparison function. Symbolic constants GL_NEVER, GL_LESS,
GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and
GL_ALWAYSare accepted. Theinitial valueisGL_ALWAYS.

ref Specifies the reference value that incoming alpha values are compared to. This value is clamped to
the range O through 1, where O represents the lowest possible alpha value and 1 the highest possible
value. Theinitial reference valueisO.

DESCRIPTION
The apha test discards fragments depending on the outcome of a comparison between an incoming
fragment’ s alpha value and a constant reference value. fglAlphaFunc specifies the reference value and the
comparison function. The comparison is performed only if alpha testing is enabled. By default, it is not
enabled. (See fglEnable and fgIDisable of GL_ALPHA_TEST.)

func and ref specify the conditions under which the pixel is drawn. The incoming apha value is compared
to ref using the function specified by func. If the value passes the comparison, the incoming fragment is
drawn if it also passes subsequent stencil and depth buffer tests. If the value fails the comparison, no
change is made to the frame buffer at that pixel location. The comparison functions are as follows:

GL_NEVER Never passes.

GL_LESS Passes if the incoming alpha value is less than the reference value.
GL_EQUAL Passes if the incoming alpha value is equal to the reference value.
GL_LEQUAL Passes if the incoming alpha value is less than or equal to the reference value.

GL_GREATER Passes if the incoming alpha value is greater than the reference value.
GL_NOTEQUAL Passesif theincoming alphavalueis not equal to the reference value.

GL_GEQUAL Passes if the incoming alpha value is greater than or equal to the reference value.
GL_ALWAYS Always passes (initial value).

fglAlphaFunc operates on all pixel write operations, including those resulting from the scan conversion of

points, lines, polygons, and bitmaps, and from pixel draw and copy operations. fglAlphaFunc does not
affect screen clear operations.

NOTES
Alphatesting is performed only in RGBA mode.

ERRORS
GL_INVALID_ENUM isgenerated if funcis not an accepted value.

GL_INVALID_OPERATION is generated if fglAlphaFunc is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_ALPHA_TEST_FUNC
fglGet with argument GL_ALPHA_TEST_REF
fgll sEnabled with argument GL_ALPHA_TEST

Page 1 July 22, 1997

FGLALPHAFUNC() UNIX System V FGLALPHAFUNC()

SEE ALSO
fglBlendFunc, fglClear, fglDepthFunc, fglEnable, fglStencilFunc

July 22, 1997 Page 2

FGLARETEXTURESRESIDENT () UNIX System V FGLARETEXTURESRESIDENT ()

NAME
foglAreT exturesResident — determine if textures are loaded in texture memory

FORTRAN SPECIFICATION
LOGICAL*1 fglAreTexturesResident(INTEGER*4 n,

CHARACTER* 8 textures,
CHARACTER*8 residences)
PARAMETERS
n Specifies the number of textures to be queried.

textures Specifies an array containing the names of the textures to be queried.

residences Specifies an array in which the texture residence status is returned. The residence status of a
texture named by an element of textures is returned in the corresponding element of residences.

DESCRIPTION
GL establishes a ‘‘working set’’ of textures that are resident in texture memory. These textures can be
bound to a texture target much more efficiently than textures that are not resident.

fglAreT exturesResident queries the texture residence status of the n textures named by the elements of
textures. If all the named textures are resident, fglAreT exturesResident returns GL_TRUE, and the con-
tents of residences are undisturbed. If not al the named textures are resident, fglAreTextur esResident
returns GL_FAL SE, and detailed status is returned in the n elements of residences. If an element of
residencesis GL_TRUE, then the texture named by the corresponding element of textures is resident.

The residence status of a single bound texture may also be queried by calling fglGetTexParameter with
the target argument set to the target to which the texture is bound, and the p_name argument set to
GL_TEXTURE_RESIDENT. Thisis the only way that the residence status of a default texture can be
queried.

NOTES
fglAreT exturesResident isavailable only if the GL versionis 1.1 or greater.

foglAreTexturesResident returns the residency status of the textures at the time of invocation. It does not
guarantee that the textures will remain resident at any other time.

If texturesreside in virtual memory (there is no texture memory), they are considered always resident.
Some implementations may not load a texture until the first use of that texture.

ERRORS
GL_INVALID_VALUE isgenerated if nisnegative.

GL_INVALID_VALUE is generated if any element in textures is O or does not hame a texture. In that
case, the function returns GL_FAL SE and the contents of residences isindeterminate.

GL_INVALID_OPERATION is generated if fglAreTexturesResident is executed between the execu-
tion of fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGetTexParameter with parameter name GL_TEXTURE_RESIDENT retrieves the residence status of
acurrently bound texture.

SEE ALSO
fglBindTexture, fglGetTexParameter, fglPrioritizeTextures, fglTexImagelD, fglTexImage2D,
fgl TexParameter

Page 1 July 22, 1997

FGLARRAYELEMENT() UNIX System V FGLARRAYELEMENT ()

NAME

fglArrayElement — render a vertex using the specified vertex array element

FORTRAN SPECIFICATION

SUBROUTINE fglArrayElement(INTEGER*4 i)

delim $$

PARAMETERS

i Specifies an index into the enabled vertex data arrays.

DESCRIPTION

NOTES

fglArrayElement commands are used within fglBegin/fglEnd pairs to specify vertex and attribute data for
point, line, and polygon primitives. If GL_VERTEX_ARRAY is enabled when fglArrayElement is
called, asingle vertex is drawn, using vertex and attribute data taken from location i of the enabled arrays.
If GL_VERTEX_ARRAY is not enabled, no drawing occurs but the attributes corresponding to the
enabled arrays are modified.

Use fglArrayElement to construct primitives by indexing vertex data, rather than by streaming through
arrays of data in first-to-last order. Because each call specifies only a single vertex, it is possible to expli-
citly specify per-primitive attributes such as a single normal per individual triangle.

Changes made to array data between the execution of fglBegin and the corresponding execution of fglEnd
may affect calls to fglArrayElement that are made within the same fglBegin/fglEnd period in non-
sequential ways. That is, acall to

fglArrayElement that precedes a change to array data may access the changed data, and a call that follows
achange to array data may access original data.

fglArrayElement isavailable only if the GL versionis 1.1 or greater.

fglArrayElement isincluded in display lists. If fglArrayElement is entered into a display list, the neces-
sary array data (determined by the array pointers and enables) is also entered into the display list. Because
the array pointers and enables are client-side state, their values affect display lists when the lists are
created, not when the lists are executed.

SEE ALSO

Page 1

fglColor Pointer, fglDrawArrays, fglEdgeFlagPointer, fglGetPointerv,
fgllndexPointer, fgll nterleavedArrays, fglNor malPointer, fgl TexCoor dPointer, fglVertexPointer

July 22, 1997

FGLBEGIN()

NAME

UNIX System V FGLBEGIN()

fglBegin, fglEnd — delimit the vertices of a primitive or a group of like primitives

FORTRAN SPECIFICATION

SUBROUTINE fglBegin(INTEGER* 4 mode)

PARAMETERS

mode Specifies the primitive or primitives that will be created from vertices presented between fglBegin
and the subsequent fglEnd. Ten symbolic constants are accepted: GL_POINTS, GL_LINES,
GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

FORTRAN SPECIFICATION

SUBROUTINE fglEnd()

DESCRIPTION

fglBegin and fglEnd delimit the vertices that define a primitive or a group of like primitives. fglBegin
accepts a single argument that specifies in which of ten ways the vertices are interpreted. Taking n as an
integer count starting a one, and N as the total number of vertices specified, the interpretations are as fol-

lows:
GL_POINTS

GL_LINES

GL_LINE_STRIP

GL_LINE_LOOP

GL_TRIANGLES

Treats each vertex as a single point. Vertex n defines point n. N points are
drawn.

Treats each pair of vertices as an independent line segment. Vertices 2n-1 and
2ndefinelinen. N/2 lines are drawn.

Draws a connected group of line segments from the first vertex to the last. Ver-
ticesn and n+1 definelinen. N-1lines are drawn.

Draws a connected group of line segments from the first vertex to the last, then
back to the first. Vertices n and n+1 define line n. The last line, however, is
defined by verticesN and 1. N lines are drawn.

Treats each triplet of vertices as an independent triangle. Vertices 3n—2, 3n-1,
and 3n define triangle n. N/3 triangles are drawn.

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

GL_POLYGON

Page 1

Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. For odd n, vertices n, n+1, and n+2 define
triangle n. For even n, vertices n+1, n, and n+2 define triangle n. N-2 triangles
are drawn.

Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. Vertices 1, n+1, and n+2 define triangle n.
N-2 triangles are drawn.

Treats each group of four vertices as an independent quadrilateral. Vertices
4n-3, 4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals are drawn.

Draws a connected group of quadrilaterals. One quadrilateral is defined for each
pair of vertices presented after the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1
define quadrilateral n. N/2-1 quadrilaterals are drawn. Note that the order in
which vertices are used to construct a quadrilateral from strip data is different
from that used with independent data.

Draws a single, convex polygon. Vertices 1 through N define this polygon.

July 22, 1997

FGLBEGIN() UNIX System V FGLBEGIN()

Only a subset of GL commands can be used between fglBegin and fglEnd. The commands are fglVertex,
fglColor, fglindex, fgINormal, fglTexCoord, fglEvalCoord, fglEvalPoint, fglArrayElement, fgiMa-
terial, and fglEdgeFlag. Also, it is acceptable to use fglCallList or fglCallLists to execute display lists
that include only the preceding commands. If any other GL command is executed between fglBegin and
fglEnd, the error flag is set and the command isignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that can be defined
between fglBegin and fglEnd. Lines, triangles, quadrilaterals, and polygons that are incompletely
specified are not drawn. Incomplete specification results when either too few vertices are provided to
specify even a single primitive or when an incorrect multiple of vertices is specified. The incomplete primi-
tiveisignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows. 1 for a point, 2 for aline, 3 for a
triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of vertices are
GL_LINES(2), GL_TRIANGLES (3), GL_QUADS (4), and GL_QUAD_STRIP (2).

ERRORS
GL_INVALID_ENUM isgenerated if mode is set to an unaccepted value.

GL_INVALID_OPERATION is generated if fglBegin is executed between a fglBegin and the
corresponding execution of fglEnd.

GL_INVALID_OPERATION isgenerated if fglEnd is executed without being preceded by afglBegin.

GL_INVALID_OPERATION is generated if a command other than fglVertex, fglColor, fglindex,
fglNormal, fglTexCoord, fglEvalCoord, fglEvalPoint, fglArrayElement, fglMaterial, fglEdgeFlag,
fglCallList, or fglCallLists is executed between the execution of fglBegin and the corresponding execu-
tion fglEnd.

Execution of fglEnableClientState, fglDisableClientState, fglEdgeFlagPointer, fglTexCoordPointer,
fglColor Pointer, fgll ndexPointer, fglNor malPointer,

fglVertexPointer, fgllnterleavedArrays, or fglPixelStore is not allowed after a call to fgIBegin and
before the corresponding call to fglEnd, but an error may or may not be generated.

SEE ALSO
fglArrayElement, fglCallList, fglCallLists, fglColor, fglEdgeFlag, fglEvalCoord,
fglEvalPoint, fgllndex, fglMaterial, fgINormal, fglTexCoord, fglVertex

July 22, 1997 Page 2

FGLBINDTEXTURE() UNIX System V FGLBINDTEXTURE()

NAME

fglBindTexture — bind a named texture to a texturing target

FORTRAN SPECIFICATION

SUBROUTINE fgIBindTextur e(INTEGER* 4 target,
INTEGER*4 texture)

PARAMETERS

target Specifies the target to which the texture is bound. Must be either GL_TEXTURE_1D or
GL_TEXTURE_2D.

texture Specifiesthe name of atexture.

DESCRIPTION

NOTES

fglBindTexture lets you create or use a named texture. Calling fglBindTextur e with

target set to GL_TEXTURE_1D or GL_TEXTURE_2D and texture set to the name of the newtexture
binds the texture name to the target. When atexture is bound to a target, the previous binding for that target
is automatically broken.

Texture names are unsigned integers. The value zero is reserved to represent the default texture for each
texture target. Texture names and the corresponding texture contents are local to the shared display-list
space (see fglX CreateContext) of the current GL rendering context; two rendering contexts share texture
names only if they also share display lists.

You may use fglGenTexturesto generate a set of new texture names.

When a texture is first bound, it assumes the dimensionality of its target: A texture first bound to
GL_TEXTURE_1D becomes 1-dimensional and a texture first bound to GL_TEXTURE_2D becomes 2-
dimensional. The state of a 1-dimensiona texture immediately after it is first bound is equivalent to the
state of the default GL_ TEXTURE_1D at GL initialization, and similarly for 2-dimensional textures.

While a texture is bound, GL operations on the target to which it is bound affect the bound texture, and
queries of the target to which it is bound return state from the bound texture. If texture mapping of the
dimensionality of the target to which a texture is bound is active, the bound texture is used. In effect, the
texture targets become aliases for the textures currently bound to them, and the texture name zero refers to
the default textures that were bound to them at initialization.

A texture binding created with fglBind T extur e remains active until a different texture is bound to the same
target, or until the bound texture is deleted with fglDeleteT extures.

Once created, a named texture may be re-bound to the target of the matching dimensionality as often as
needed. It is usually much faster to use fglBindTexture to bind an existing named texture to one of the
texture targets than it is to reload the texture image using fgl TexlmagelD or fglTexImage2D. For addi-
tional control over performance, use fglPrioritizeT extures.

fglBindTextureisincluded in display lists.

fglBindTextureisavailable only if the GL versionis 1.1 or greater.

ERRORS

Page 1

GL_INVALID_ENUM isgenerated if target is not one of the allowable values.

GL_INVALID_OPERATION is generated if texture has a dimensionality which doesn’t match that of
target.

GL_INVALID_OPERATION is generated if fgIBindTexture is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

July 22, 1997

FGLBINDTEXTURE() UNIX System V FGLBINDTEXTURE()

ASSOCIATED GETS
fglGet with argument GL_TEXTURE_1D_BINDING
fglGet with argument GL_TEXTURE_2D_BINDING

SEE ALSO
fglAreTexturesResident, fglDeleteT extures, fglGenTextures, fglGet,
fglGetTexParameter, fgllsTexture, fglPrioritizeTextures, fglTexlmagelD, fglTexlmage2D, fglTex-
Parameter

July 22, 1997 Page 2

FGLBITMAP() UNIX System V FGLBITMAP()

NAME

fglBitmap — draw a bitmap

FORTRAN SPECIFICATION

SUBROUTINE fgIBitmap(INTEGER*4 width,

INTEGER* 4 height,
REAL*4 xorig,
REAL*4 yorig,
REAL*4 xmove,
REAL*4 ymove,
CHARACTER* 256 bitmap)

delim $$

PARAMETERS
width, height

Specify the pixel width and height of the bitmap image.

xorig, yorig Specify the location of the origin in the bitmap image. The origin is measured from the lower
left corner of the bitmap, with right and up being the positive axes.

Xmove, ymove
Specify the x and y offsets to be added to the current raster position after the bitmap is drawn.

bitmap Specifies the address of the bitmap image.

DESCRIPTION

Page 1

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current raster position,
and frame buffer pixels corresponding to 1's in the bitmap are written using the current raster color or
index. Frame buffer pixels corresponding to 0’s in the bitmap are not modified.

fglBitmap takes seven arguments. The first pair specifies the width and height of the bitmap image. The
second pair specifies the location of the bitmap origin relative to the lower left corner of the bitmap image.
The third pair of arguments specifies x and y offsets to be added to the current raster position after the bit-
map has been drawn. The final argument is a pointer to the bitmap image itself.

The bitmap image is interpreted like image data for the fglDrawPixels command, with width and height
corresponding to the width and height arguments of that command, and with type set to GL_BITMAP and
format set to GL_COLOR_INDEX. Modes specified using fglPixelStore affect the interpretation of bit-
map image data; modes specified using fglPixel Transfer do not.

If the current raster position is invalid, fgIBitmap is ignored. Otherwise, the lower left corner of the bit-
map image is positioned at the window coordinates

$xsubw™="| "xsubr™-"xsubo~| $
$ysubw™="|"ysubr~-"ysubo~| $

where$ (xsubr,y subr) $isthe raster positionand $ (x sub o, y sub 0) $ is the bitmap origin. Frag-
ments are then generated for each pixel corresponding to a 1 (one) in the bitmap image. These fragments
are generated using the current raster z coordinate, color or color index, and current raster texture coordi-
nates. They are then treated just as if they had been generated by a point, line, or polygon, including tex-
ture mapping,

fogging, and all per-fragment operations such as apha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster position are offset by xmove
and ymove. No change is made to the z coordinate of the current raster position, or to the current raster
color, texture coordinates, or index.

July 22, 1997

FGLBITMAP() UNIX System V FGLBITMAP()

NOTES
To set avalid raster position outside the viewport, first set a valid raster position inside the viewport, then
call fglBitmap with NULL as the bitmap parameter and with xmove and ymove set to the offsets of the new
raster position. This technique is useful when panning an image around the viewport.

ERRORS
GL_INVALID_VALUE isgenerated if width or height is negative.

GL_INVALID_OPERATION is generated if fgIlBitmap is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_CURRENT_RASTER_POSITION
fglGet with argument GL_CURRENT_RASTER_COLOR
fglGet with argument GL_CURRENT_RASTER_INDEX
fglGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS
fglGet with argument GL_CURRENT_RASTER_POSITION_VALID

SEE ALSO
folDrawPixels, fglPixelStor e, fglPixel Transfer, fglRaster Pos

July 22, 1997 Page 2

FGLBLENDCOLOREXT () UNIX System V FGLBLENDCOLOREXT ()

NAME
fglBlendColor EXT - set the blend color

FORTRAN SPECIFICATION
SUBROUTINE fgIBlendColor EXT(REAL*4 red,

REAL*4 green,
REAL*4 blue,
REAL*4 alpha)
delim $$
PARAMETERS

red, green, blue, alpha specify the componentsof GL_BLEND COLOR_EXT

DESCRIPTION
The GL_BLEND_COLOR_EXT may be used to caculate the source and destination blending factors.
See fglBlendFunc for a complete description of the blending operations. Initialy the
GL_BLEND_COLOR_EXT isset to (0,0,0,0).

NOTES
fglBlendColor EXT is part of the _extname(EXT_blend_color) extension, not part of the core GL com-
mand set. If _extstring(EXT_blend_color) isincluded in the string returned by fglGetString, when called
with argument GL_EXTENSIONS, extension _extname(EXT_blend_color) is supported by the connec-
tion.

ERRORS
GL_INVALID_OPERATION is generated if fglBlendColor EXT is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with an argument of GL_BLEND _COLOR_EXT.

SEE ALSO
fglBlendFunc, fglGetString.

Page 1 July 22, 1997

FGLBLENDFUNC() UNIX System V FGLBLENDFUNC()

NAME

fglBlendFunc — specify pixel arithmetic

FORTRAN SPECIFICATION

SUBROUTINE fgiBlendFunc(INTEGER*4 sfactor,
INTEGER* 4 dfactor)

delim $$

PARAMETERS

sfactor Specifies how the red, green, blue, and alpha source blending factors are computed. Nine symbolic
constants are accepted: GL_ZERO, GL_ONE, GL_DST_COLOR,
GL_ONE_MINUS DST_COLOR, GL_SRC_ALPHA, GL_ONE_MINUS SRC_ALPHA,
GL_DST_ALPHA, GL_ONE_MINUS DST_ALPHA, and GL_SRC_ALPHA_SATURATE.
Theinitial valueisGL_ONE.

dfactor Specifies how the red, green, blue, and apha destination blending factors are computed. Eight
symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC _COLOR,
GL_ONE_MINUS SRC COLOR, GL_SRC ALPHA, GL_ONE_MINUS SRC_ALPHA,
GL_DST_ALPHA, and GL_ONE_MINUS DST_ALPHA. Theinitial valueisGL_ZERO.

DESCRIPTION

In RGBA mode, pixels can be drawn using a function that blends the incoming (source) RGBA values with
the RGBA values that are aready in the frame buffer (the destination values). Blending is initialy dis-
abled. UsefglEnable and fglDisable with argument GL_BL END to enable and disable blending.

fglBlendFunc defines the operation of blending when it is enabled. sfactor specifies which of nine
methods is used to scale the source color components. dfactor specifies which of eight methods is used to
scale the destination color components. The eleven possible methods are described in the following table.
Each method defines four scale factors, one each for red, green, blue, and alpha.

In the table and in subsequent equations, source and destination color components are referred to as $(R

subs,Gsubs,Bsubs,Asubs)and(Rsubd,Gsubd,Bsubd, A subd)$. They are understood to

have integer values between O and $(k sub R, k sub G, k sub B , k sub A)$, where
$ksubc™="2supmsubc- 1$

and $(msub R, msub G, msub B, msub A)$ isthe number of red, green, blue, and alpha bitplanes.

Source and destination scale factors are referred toas $(ssub R, ssub G, ssub B, ssub A)$ and $(d sub

R,dsubG,dsubB,dsubA)$. The scale factors described in the table, denoted $(f sub R, f sub G, f
sub B, f sub A)$, represent either source or destination factors. All scale factors have range [0,1].

parameter $(fsubR, " fsub G, " fsubB, " fsubA)$
GL_ZERO $(0,70,70,70)$
GL_ONE $(1,71,71,71)$

GL_SRC_COLOR
GL_ONE_MINUS SRC_COLOR
GL_DST_COLOR
GL_ONE_MINUS DST_COLOR
GL_SRC_ALPHA
GL_ONE_MINUS SRC_ALPHA
GL_DST_ALPHA
GL_ONE_MINUS DST_ALPHA
GL_SRC_ALPHA_SATURATE

$(Rsubs/ksubR,"Gsubs/ksub G, Bsubs/ksubB, A subs/ksubA)$
$(1,71,71,"1)-"(Rsubs/ksubR,"Gsubs/ksubG,"Bsubs/ksubB,"A subs/ksubA)$
$Rsubd/ksubR,"Gsubd/ksub G, Bsubd/ksubB,"Asubd/ksubA)$
$(1,71,71,"1)-"(Rsubd/ksubR,"Gsubd/ksub G, Bsubd/ksubB, A subd/ksubA)$
$(A subs/ksubA ,"Asubs/ksubA,"Asubs/ksubA,"Asubs/ksubA)$
$(1,71,71,71)-" (Asubs/ksubA,"Asubs/ksubA,"Asubs/ksubA,"A subs/ksubA)$
$(Asubd/ksubA,"Asubd/ksubA,"Asubd/ksubA,"Asubd/ksubA)$
$(1,71,71,71) " (Asubd/ksubA,"Asubd/ksubA,"Asubd/ksubA,"Asubd/k subA)$
$(i,71,71,71)$

Page 1

July 22, 1997

FGLBLENDFUNC() UNIX System V FGLBLENDFUNC()

In the table,
$"=" min(Asubs,ksubA-Asubd) /" ksubA$

To determine the blended RGBA values of a pixel when drawing in RGBA mode, the system uses the fol-
lowing equations:

$Rsubd™="min(ksubR," " RsubsssubR+RsubddsubR)$
$Gsubd™="min(ksubG, " Gsubsssub G+ GsubddsubG)$
$Bsubd™="min(ksubB, BsubsssubB+BsubddsubB)$
$SAsubd™="min(ksubA," AsubsssubA +AsubddsubA)$

Despite the apparent precision of the above equations, blending arithmetic is not exactly specified, because
blending operates with imprecise integer color values. However, a blend factor that should be equal to 1 is
guaranteed not to modify its multiplicand, and a blend factor equal to O reduces its multiplicand to 0. For
example, when sfactor is GL_SRC_ALPHA, dfactor is GL_ONE_MINUS SRC _ALPHA, and $A sub
s$isequal to $k sub A$, the equations reduce to simple replacement:

$Rsubd"="Rsub s$
$G subd™=" G sub s$
$B sub d"="B sub s$
$A subd™=" A sub s$

EXAMPLES
Transparency is best implemented using blend function (GL_SRC_ALPHA,
GL_ONE_MINUS SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this tran-
sparency calculation does not require the presence of alpha bitplanes in the frame buffer.

Blend function (GL_SRC_ALPHA, GL_ONE_MINUS SRC _ALPHA) is aso useful for rendering
antialiased points and linesin arbitrary order.

Polygon antialiasing is optimized using blend function (GL_SRC _ALPHA_SATURATE, GL_ONE)
with polygons sorted from nearest to farthest. (See the fglEnable, fglDisable reference page and the
GL_POLYGON_SMOOTH argument for information on polygon antialiasing.) Destination alpha bit-
planes, which must be present for this blend function to operate correctly, store the accumulated coverage.

NOTES
Incoming (source) apha is correctly thought of as a material opacity, ranging from 1.0 (3K sub A$),
representing complete opacity, to 0.0 (0), representing complete
transparency.

When more than one color buffer is enabled for drawing, the GL performs blending separately for each
enabled buffer, using the contents of that buffer for destination color. (See fglDrawBuffer.)
Blending affects only RGBA rendering. It isignored by color index renderers.

ERRORS
GL_INVALID_ENUM isgenerated if either sfactor or dfactor is not an accepted value.

GL_INVALID_OPERATION is generated if fglBlendFunc is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_BLEND_SRC
fglGet with argument GL_BLEND_DST
fgllsEnabled with argument GL_BL END

SEE ALSO
fglAlphaFunc, fglClear, fglDrawBuffer, fglEnable, fglL ogicOp, fglStencilFunc

July 22, 1997 Page 2

FGLCALLLIST() UNIX System V FGLCALLLIST()

NAME

fglCallList — execute adisplay list

FORTRAN SPECIFICATION

SUBROUTINE fglCallList(INTEGER*4 list)

PARAMETERS

list Specifiesthe integer name of the display list to be executed.

DESCRIPTION

NOTES

fglCallList causes the named display list to be executed. The commands saved in the display list are exe-
cuted in order, just as if they were called without using a display list. If list has not been defined as a
display list, fglCallList isignored.

fglCallList can appear inside a display list. To avoid the possibility of infinite recursion resulting from
display lists calling one another, a limit is placed on the nesting level of display lists during display-list
execution. Thislimitisat least 64, and it depends on the implementation.

GL state is not saved and restored across a call to fglCallList. Thus, changes made to GL state during the
execution of a display list remain after execution of the display list is completed. Use fglPushAttrib,
fglPopAttrib, fglPushMatrix, and fglPopM atrix to preserve GL state across fglCallList calls.

Display lists can be executed between a call to fglBegin and the corresponding call to fglEnd, as long as
the display list includes only commands that are allowed in thisinterval.

ASSOCIATED GETS

fglGet with argument GL_MAX_LIST_NESTING
fgllsList

SEE ALSO

Page 1

folCallLists, fglDeletelists, fglGenLists, fglNewL ist, fglPushAttrib, fglPushMatrix

July 22, 1997

FGLCALLLISTS()

NAME

UNIX System V FGLCALLLISTS()

fglCallLists — execute alist of display lists

FORTRAN SPECIFICATION
SUBROUTINE fglCallLists{ INTEGER*4 n,

PARAMETERS
n Specifiesthe number of display liststo be executed.

type Specifies the type of values in lists. Symbolic constants GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT,
GL_2 BYTES,GL_3 BYTES, and GL_4 BYTESare accepted.

lists Specifies the address of an array of name offsets in the display list. The pointer type is void because
the offsets can be bytes, shorts, ints, or floats, depending on the value of type.

DESCRIPTION
fglCallLists causes each display list in the list of names passed as lists to be executed. As a result, the
commands saved in each display list are executed in order, just as if they were called without using a
display list. Names of display liststhat have not been defined are ignored.

Page 1

INTEGER* 4 type,
CHARACTER*8 lists)

fglCallLists provides an efficient means for executing more than one display list. type alows lists with
various name formats to be accepted. The formats are as follows:

GL_BYTE

GL_UNSIGNED_BYTE

GL_SHORT

GL_UNSIGNED_SHORT

GL_INT
GL_UNSIGNED_INT
GL_FLOAT

GL_2 BYTES

GL_3 BYTES

GL_4 BYTES

listsis treated as an array of signed bytes, each in the range —128 through
127.

lists is treated as an array of unsigned bytes, each in the range O through
255,

lists is treated as an array of signed two-byte integers, each in the range
—32768 through 32767.

listsis treated as an array of unsigned two-byte integers, each in the range 0
through 65535.

listsistreated as an array of signed four-byte integers.
listsistreated as an array of unsigned four-byte integers.
listsistreated as an array of four-byte floating-point values.

listsis treated as an array of unsigned bytes. Each pair of bytes specifies a
single display-list name. The value of the pair is computed as 256 times the
unsigned value of the first byte plus the unsigned value of the second byte.

listsistreated as an array of unsigned bytes. Each triplet of bytes specifies a
single display-list name. The value of the triplet is computed as 65536
times the unsigned value of the first byte, plus 256 times the unsigned value
of the second byte, plus the unsigned value of the third byte.

lists is treated as an array of unsigned bytes. Each quadruplet of bytes
specifies a single display-list name. The value of the quadruplet is com-
puted as 16777216 times the unsigned value of the first byte, plus 65536
times the unsigned value of the second byte, plus 256 times the unsigned
value of the third byte, plus the unsigned value of the fourth byte.

The list of display-list names is not null-terminated. Rather, n specifies how many names are to be taken

from lists.

July 22, 1997

FGLCALLLISTS() UNIX System V FGLCALLLISTS()

An additional level of indirection is made available with the fglListBase command, which specifies an
unsigned offset that is added to each display-list name specified in lists before that display list is executed.

fglCallLists can appear inside a display list. To avoid the possibility of infinite recursion resulting from
display lists calling one another, a limit is placed on the nesting level of display lists during display-list
execution. Thislimit must be at least 64, and it depends on the implementation.

GL state is not saved and restored across a call to fglCallLists. Thus, changes made to GL state during the
execution of the display lists remain after execution is completed. Use fglPushAttrib, fglPopAttrib,
fglPushMatrix, and fglPopMatrix to preserve GL state across fglCallListscalls.

NOTES

Display lists can be executed between a call to fglBegin and the corresponding call to fglEnd, as long as
the display list includes only commands that are allowed in thisinterval.

ERRORS
GL_INVALID_VALUE isgenerated if nisnegative.

GL_INVALID_ENUM is generated if type is not one of GL_BYTE, GL_UNSIGNED_BYTE,
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT,
GL_2 BYTES GL_3 BYTES GL_4 BYTES.

ASSOCIATED GETS
fglGet with argument GL_LIST_BASE
fglGet with argument GL_MAX_LIST_NESTING
follsList

SEE ALSO
fglCallList, fglDeletelists, fglGenLists, fglListBase, fglNewL ist, fglPushAttrib,
fglPushMatrix

July 22, 1997 Page 2

FGLCLEAR() UNIX System V FGLCLEAR()

NAME
fglClear — clear buffers to preset values

FORTRAN SPECIFICATION
SUBROUTINE fglClear (INTEGER*4 mask)

PARAMETERS
mask Bitwise OR of masks that indicate the buffers to be cleared. The four masks are
GL_COLOR_BUFFER BIT, GL_DEPTH_BUFFER BIT, GL_ACCUM_BUFFER_BIT, and
GL_STENCIL_BUFFER_BIT.

DESCRIPTION
fglClear sets the bitplane area of the window to values previously selected by fglClear Color, fglClearIn-
dex, fglClear Depth, fglClear Stencil, and fglClear Accum. Multiple color buffers can be cleared simul-
taneously by selecting more than one buffer at atime using fglDrawBuffer.

The pixel ownership test, the scissor test, dithering, and the buffer writemasks affect the operation of
fglClear. The scissor box bounds the cleared region. Alpha function, blend function, logical operation,
stenciling, texture mapping, and depth-buffering are ignored by fglClear.

fglClear takes a single argument that is the bitwise OR of several values indicating which buffer is to be
cleared.

The values are as follows:

GL_COLOR_BUFFER_BIT Indicates the buffers currently enabled for color writing.
GL_DEPTH_BUFFER_BIT Indicates the depth buffer.
GL_ACCUM_BUFFER_BIT Indicates the accumulation buffer.

GL_STENCIL_BUFFER BIT
Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for that buffer.

NOTES
If abuffer isnot present, then afglClear directed at that buffer has no effect.

ERRORS
GL_INVALID_VALUE isgenerated if any bit other than the four defined bitsis set in mask.

GL_INVALID_OPERATION isgenerated if fglClear is executed between the execution of fglBegin and
the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_ACCUM_CLEAR_VALUE
fglGet with argument GL_DEPTH_CLEAR_VALUE
fglGet with argument GL_INDEX_CLEAR_VALUE
fglGet with argument GL_COLOR_CLEAR_VALUE
fglGet with argument GL_STENCIL_CLEAR_VALUE

SEE ALSO
fglClearAccum, fglClearColor, fglClearDepth, fglClearindex, fglClearStencil, fglDrawBuffer,
fgl Scissor

Page 1 July 22, 1997

FGLCLEARACCUM() UNIX System V FGLCLEARACCUM()

NAME
fglClear Accum — specify clear values for the accumulation buffer

FORTRAN SPECIFICATION
SUBROUTINE fglClear Accum(REAL*4 red,
REAL*4 green,
REAL*4 blue,
REAL*4 alpha)

PARAMETERS
red, green, blue, alpha
Specify the red, green, blue, and alpha values used when the accumulation buffer is
cleared. Theinitial valuesaredl 0.

DESCRIPTION
fglClear Accum specifies the red, green, blue, and alpha values used by fglClear to clear the accumulation
buffer.

Values specified by fglClear Accum are clamped to the range [-1,1].

ERRORS
GL_INVALID_OPERATION is generated if fglClear Accum is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_ACCUM_CLEAR_VALUE

SEE ALSO
fglClear

Page 1 July 22, 1997

FGLCLEARCOLOR() UNIX System V FGLCLEARCOLOR()

NAME
fglClear Color — specify clear values for the color buffers

FORTRAN SPECIFICATION
SUBROUTINE fglClear Color (REAL*4 red,
REAL*4 green,
REAL*4 blue,
REAL*4 alpha)

PARAMETERS
red, green, blue, alpha
Specify the red, green, blue, and alpha values used when the color buffers are
cleared. Theinitial valuesaredl 0.

DESCRIPTION
fglClear Color specifies the red, green, blue, and alpha values used by fglClear to clear the color buffers.
Values specified by fglClear Color are clamped to the range [0,1].

ERRORS
GL_INVALID_OPERATION is generated if fglClear Color is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_COLOR_CLEAR_VALUE

SEE ALSO
fglClear

Page 1 July 22, 1997

FGLCLEARDEPTH() UNIX System V FGLCLEARDEPTH()

NAME
fglClear Depth — specify the clear value for the depth buffer

FORTRAN SPECIFICATION
SUBROUTINE fgIClear Depth(REAL*4 depth)

PARAMETERS
depth Specifies the depth value used when the depth buffer is cleared. The initial valueis 1.

DESCRIPTION
fglClear Depth specifies the depth value used by fglClear to clear the depth buffer. Values specified by
fglClear Depth are clamped to the range [0,1].

ERRORS
GL_INVALID_OPERATION isgenerated if fglClear Depth is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_DEPTH_CLEAR_VALUE

SEE ALSO
fglClear

Page 1 July 22, 1997

FGLCLEARINDEX () UNIX System V FGLCLEARINDEX()

NAME
fglClear I ndex — specify the clear value for the color index buffers

FORTRAN SPECIFICATION
SUBROUTINE fgIClearIndex(REAL*4 ¢)

delim $$

PARAMETERS
¢ Specifiesthe index used when the color index buffers are cleared. Theinitial valueisO.

DESCRIPTION
fglClearIndex specifies the index used by fglClear to clear the color index buffers. c is not clamped.
Rather, cis converted to a fixed-point value with unspecified precision to the right of the binary point. The
integer part of this value is then masked with $2 sup m -1$, where m is the number of bits in a color
index stored in the frame buffer.

ERRORS
GL_INVALID_OPERATION isgenerated if fglClearIndex is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_INDEX_CLEAR_VALUE
fglGet with argument GL_INDEX_BITS

SEE ALSO
fglClear

Page 1 July 22, 1997

FGLCLEARSTENCIL () UNIX System V FGLCLEARSTENCIL ()

NAME
fglClear Stencil — specify the clear value for the stencil buffer

FORTRAN SPECIFICATION
SUBROUTINE fglClear Stencil(INTEGER*4 s)

delim $$

PARAMETERS
s Specifiesthe index used when the stencil buffer iscleared. Theinitial valueisO.

DESCRIPTION
fglClear Stencil specifies the index used by fglClear to clear the stencil buffer. sis masked with $2 sup m
- 1%, where m is the number of bitsin the stencil buffer.

ERRORS
GL_INVALID_OPERATION is generated if fglClearStencil is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_STENCIL_CLEAR_VALUE
fglGet with argument GL_STENCIL_BITS

SEE ALSO
fglClear

Page 1 July 22, 1997

FGLCLIPPLANE() UNIX System V FGLCLIPPLANE()

NAME

fglClipPlane — specify a plane against which all geometry is clipped

FORTRAN SPECIFICATION

SUBROUTINE fglClipPlane(INTEGER* 4 plane,
CHARACTER*8 equation)

delim $$

PARAMETERS

plane Specifies which clipping plane is being positioned. Symbolic names of the form
GL_CLIP_PLANEI, where i is an integer between 0 and GL_MAX_CLIP_PLANES -1, are
accepted.

equation Specifies the address of an array of four double-precision floating-point values. These values are
interpreted as a plane eguation.

DESCRIPTION

NOTES

Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and z fglClipPlane
alows the specification of additional planes, not necessarily perpendicular to the X, y, or z axis, against
which &l geometry is clipped. To determine the maximum number of additional clipping planes, call
fglGetlntegerv with argument GL_MAX_CLIP_PLANES. All implementations support &t least six such
clipping planes. Because the resulting clipping region is the intersection of the defined half-spaces, it is
aways convex.

fglClipPlane specifies a half-space using a four-component plane equation. When fglClipPlane is called,
equation is transformed by the inverse of the modelview matrix and stored in the resulting eye coordinates.
Subsequent changes to the modelview matrix have no effect on the stored plane-equation components. |If
the dot product of the eye coordinates of a vertex with the stored plane equation components is positive or
zero, the vertex isin with respect to that clipping plane. Otherwise, it isout.

To enable and disable clipping planes, cal fglEnable and fglDisable with the argument
GL_CLIP_PLANEI, wherei isthe plane number.

All clipping planes are initially defined as (0, O, 0, 0) in eye coordinates and are disabled.

Itisalwaysthecasethat GL_CLIP_PLANESi=GL_CLIP_PLANEO+ i.

ERRORS

GL_INVALID_ENUM isgenerated if planeis not an accepted value.

GL_INVALID_OPERATION isgenerated if fglClipPlaneis executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGetClipPlane
fgll sEnabled with argument GL_CLIP_PL ANEi

SEE ALSO

Page 1

fglEnable

July 22, 1997

FGLCOLOR() UNIX System V FGLCOLOR()

NAME

fglColor3b, fglColor3d, fglColor3f, fglColor3i, fglColor3s, fglColor3ub, fglColor3ui, fglColor3us,
fglColor4b, fglColor4d, fglColor4f, fglColordi, fglColor4s, fglColor4ub, fglColor4ui, fglColor4us,
fglColor3bv, fglColor3dv, fglColor3fv, fglColor3iv, fglColor3sv, fglColor3ubv, fglColor3uiv,
fglColor3usv, fglColordbv, fglColor4ddv, fglColor4fv, fglColordiv, fglColordsv, fglColor4ubv,
fglColor4uiv, fglColor 4usv — set the current color

FORTRAN SPECIFICATION

Page 1

SUBROUTINE fglColor3b(INTEGER*1 red,
INTEGER* 1 green,
INTEGER* 1 blue)
SUBROUTINE fglColor3d(REAL*8 red,
REAL*8 green,
REAL*8 blue)
SUBROUTINE fglColor 3f(REAL*4 red,
REAL*4 green,
REAL*4 blue)
SUBROUTINE fglColor 3i(INTEGER*4 red,
INTEGER*4 green,
INTEGER*4 blue)
SUBROUTINE fglColor 3s(INTEGER* 2 red,
INTEGER*2 green,
INTEGER*2 blue)
SUBROUTINE fglColor3ub(INTEGER* 1 red,
INTEGER* 1 green,
INTEGER*1 blue)
SUBROUTINE fglColor 3ui(INTEGER*4 red,
INTEGER*4 green,
INTEGER*4 blue)
SUBROUTINE fglColor 3us(INTEGER* 2 red,
INTEGER* 2 green,
INTEGER*2 blue)
SUBROUTINE fglColor4b(INTEGER*1 red,
INTEGER* 1 green,
INTEGER*1 blue,
INTEGER*1 alpha)
SUBROUTINE fglColor4d(REAL*8 red,
REAL*8 green,
REAL*8 blue,
REAL*8 alpha)
SUBROUTINE fglColor 4f(REAL*4 red,
REAL*4 green,
REAL*4 blue,
REAL*4 alpha)
SUBROUTINE fglColor4i(INTEGER*4 red,
INTEGER*4 green,
INTEGER*4 blue,
INTEGER*4 alpha)
SUBROUTINE fglColor4s(INTEGER* 2 red,
INTEGER*2 green,
INTEGER*2 blue,
INTEGER*2 alpha)

July 22, 1997

FGLCOLOR() UNIX System V FGLCOLOR()

SUBROUTINE fglColor 4ub(INTEGER* 1 red,
INTEGER* 1 green,
INTEGER*1 blue,
INTEGER*1 alpha)

SUBROUTINE fglColor 4ui(INTEGER* 4 red,
INTEGER*4 green,
INTEGER*4 blue,
INTEGER*4 alpha)

SUBROUTINE fglColor 4us{ INTEGER*2 red,
INTEGER*2 green,
INTEGER*2 blue,
INTEGER*2 alpha)

delim $$

PARAMETERS
red, green, blue
Specify new red, green, and blue values for the current color.

alpha Specifies a new apha value for the current color. Included only in the four-argument
fglColor4 commands.

FORTRAN SPECIFICATION
SUBROUTINE fglColor 3bv(CHARACTER*8 V)
SUBROUTINE fglColor3dv(CHARACTER*8 V)
SUBROUTINE fglColor 3fv(CHARACTER*8 V)
SUBROUTINE fglColor 3iv(CHARACTER*8 V)
SUBROUTINE fglColor3sv(CHARACTER*8 V)
SUBROUTINE fglColor 3ubv(CHARACTER*256 v)
SUBROUTINE fglColor 3uiv(CHARACTER*8 V)
SUBROUTINE fglColor 3usv(CHARACTER*8 V)
SUBROUTINE fglColor 4bv(CHARACTER*8 V)
SUBROUTINE fglColor4dv(CHARACTER*8 V)
SUBROUTINE fglColor 4fv(CHARACTER*8 V)
SUBROUTINE fglColor4iv(CHARACTER*8 V)
SUBROUTINE fglColor4sv(CHARACTER*8 V)
SUBROUTINE fglColor4ubv(CHARACTER*256 v)
SUBROUTINE fglColor4uiv(CHARACTER*8 V)
SUBROUTINE fglColor4usv(CHARACTER*8 V)

PARAMETERS
% Specifies a pointer to an array that contains red, green, blue, and (sometimes) apha values.

DESCRIPTION
The GL stores both a current single-valued color index and a current four-valued RGBA color. fglColor
sets a new four-valued RGBA color. fglColor has two maor variants: fglColor3 and fglColor4.
fglColor 3 variants specify new red, green, and blue values explicitly and set the current alpha value to 1.0
(full intensity) implicitly. fglColor4 variants specify all four color components explicitly.

fglColor3b, fglColor4b, fglColor3s, fglColor4s, fglColor3i, and fglColor4i take three or four signed
byte, short, or long integers as arguments. When v is appended to the name, the color commands can take
apointer to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa and exponent sizes.
Unsigned integer color components, when specified, are linearly mapped to floating-point values such that
the largest representable value maps to 1.0 (full intensity), and O maps to 0.0 (zero intensity). Signed

July 22, 1997 Page 2

FGLCOLOR() UNIX System V FGLCOLOR()

integer color components, when specified, are linearly mapped to floating-point values such that the most
positive representable value maps to 1.0, and the most negative representable value maps to —1.0. (Note
that this mapping does not convert O precisely to 0.0.) Floating-point values are mapped directly.

Neither floating-point nor signed integer values are clamped to the range [0,1] before the current color is
updated. However, color components are clamped to this range before they are interpolated or written into
acolor buffer.

NOTES
Theinitial value for the current color is (1, 1, 1, 1).

The current color can be updated at any time. In particular, fglColor can be called between a call to fgiBe-
gin and the corresponding call to fglEnd.

ASSOCIATED GETS
fglGet with argument GL_CURRENT_COLOR
fglGet with argument GL_RGBA_MODE

SEE ALSO
fgllndex

Page 3 July 22, 1997

FGLCOLORMASK() UNIX System V FGLCOLORMASK()

NAME
fglColor M ask — enable and disable writing of frame buffer color components

FORTRAN SPECIFICATION
SUBROUTINE fglColorMask(LOGICAL*1 red,
LOGICAL*1 green,
LOGICAL*1 blue,
LOGICAL*1 alpha)

PARAMETERS
red, green, blue, alpha
Specify whether red, green, blue, and alpha can or cannot be written into the frame
buffer. The initial values are all GL_TRUE, indicating that the color components
can be written.

DESCRIPTION
fglColorMask specifies whether the individual color components in the frame buffer can or cannot be writ-
ten. If redisGL_FAL SE, for example, no change is made to the red component of any pixel in any of the
color buffers, regardless of the drawing operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are either enabled or dis-
abled for entire color components.

ERRORS
GL_INVALID_OPERATION is generated if fglColorMask is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_COLOR_WRITEMASK
fglGet with argument GL_RGBA_MODE

SEE ALSO
fglColor, fglColor Pointer, fglDepthM ask, fgllndex, fgll ndexPointer, fgllndexM ask, fglStencilM ask

Page 1 July 22, 1997

FGLCOLORMATERIAL () UNIX System V FGLCOLORMATERIAL ()

NAME
fglColorMaterial — cause amaterial color to track the current color

FORTRAN SPECIFICATION
SUBROUTINE fglColorMaterial (INTEGER* 4 face,
INTEGER*4 mode)

PARAMETERS
face Specifies whether front, back, or both front and back material parameters should track the current
color. Accepted values are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK. The nitial
vaueisGL_FRONT_AND_BACK.

mode
Specifies which of several material parameters track the current color. Accepted values are
GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and
GL_AMBIENT_AND_DIFFUSE. Theinitial valueisGL_AMBIENT_AND_DIFFUSE.
DESCRIPTION

fglColorMaterial specifies which material parameters track the current color. When
GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by mode, of the
material or materials specified by face, track the current color at al times.

To enable and disahle GL_COLOR_MATERIAL, cal fglEnable and fglDisable with argument
GL_COLOR_MATERIAL. GL_COLOR_MATERIAL isinitialy disabled.

NOTES
fglColorMaterial makes it possible to change a subset of material parameters for each vertex using only
the fglColor command, without calling fgiMaterial. If only such a subset of parametersis to be specified
for each vertex, caling fglColorMaterial is preferable to calling fgiM aterial.

Call fglColor M aterial before enabling GL_COLOR_MATERIAL.

Cdling fglDrawElements may leave the current color indeterminate. If fglColorMaterial is enabled
while the current color is indeterminate, the lighting material state specified by face and mode is also
indeterminate.

If the GL version is 1.1 or greater, and GL_COLOR_MATERIAL is enabled, evaluated color values
affect the results of the lighting equation as if the current color were being modified, but no change is made
to the tracking lighting parameter of the current color.

ERRORS
GL_INVALID_ENUM isgenerated if face or mode is not an accepted value.

GL_INVALID_OPERATION is generated if fglColorMaterial is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fgll sEnabled with argument GL_COLOR_MATERIAL
fglGet with argument GL_COLOR_MATERIAL_PARAMETER
fglGet with argument GL_COLOR_MATERIAL_FACE

SEE ALSO
fglColor, fglColor Pointer, fglDrawElements, fglEnable, fglLight, fglLightM odél, fgiM aterial

Page 1 July 22, 1997

FGLCOLORPOINTER() UNIX System V FGLCOLORPOINTER()

NAME
fglColor Pointer — define an array of colors

FORTRAN SPECIFICATION
SUBROUTINE fglColor Pointer (INTEGER*4 size,
INTEGER* 4 type,
INTEGER*4 stride,
CHARACTER*8 pointer)

delim $$

PARAMETERS
size Specifies the number of components per color. Must be 3 or 4.

type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, and GL_DOUBLE are accepted.

stride Specifies the byte offset between consecutive colors. If strideis O, (theinitial value), the colors are
understood to be tightly packed in the array.

pointer Specifies a pointer to the first component of the first color element in the array.

DESCRIPTION
fglColorPointer specifies the location and data format of an array of color components to use when
rendering. size specifies the number of components per color, and must be 3 or 4. type specifies the data
type of each color component, and stride specifies the byte stride from one color to the next alowing
vertexes and attributes to be packed into a single array or stored in separate arrays. (Single-array storage
may be more efficient on some implementations; see fgllnterleavedArrays.)

When acolor array is specified, size, type, stride, and pointer are saved as client-side state.

To enable and disable the color array, call fglEnableClientState and
fglDisableClient State with the argument GL_COL OR_ARRAY . If enabled, the color array is used when
fglDrawArrays, fglDrawElements, or fglArrayElement is called.

NOTES
fglColor Pointer isavailable only if the GL versionis 1.1 or greater.

The color array is initialy disabled and isn't accessed when fglArrayElement, fglDrawArrays, or
fglDrawElementsis called.

Execution of fglColorPointer is not allowed between the execution of fglBegin and the corresponding
execution of fglEnd, but an error may or may not be generated. If no error is generated, the operation is
undefined.

fglColor Pointer istypically implemented on the client side.

Color array parameters are client-side state and are therefore not saved or restored by fglPushAttrib and
fglPopAttrib. UsefglPushClientAttrib and fglPopClientAttrib instead.

ERRORS
GL_INVALID_VALUE isgenerated if sizeisnot 3 or 4.

GL_INVALID_ENUM isgenerated if typeisnot an accepted value.
GL_INVALID_VALUE isgenerated if stride is negative.

ASSOCIATED GETS
fgll sEnabled with argument GL_COLOR_ARRAY
fglGet with argument GL_COLOR_ARRAY_SIZE
fglGet with argument GL_COLOR_ARRAY_TYPE

Page 1 July 22, 1997

FGLCOLORPOINTER() UNIX System V FGLCOLORPOINTER()

fglGet with argument GL_COLOR_ARRAY_STRIDE
fglGetPointerv with argument GL_COLOR_ARRAY_POINTER

SEE ALSO
fglArrayElement, fglDrawArrays, fglDrawElements, fglEdgeFlagPointer,
fglEnable, fglGetPointerv, fgllndexPointer, fgllnterleavedArrays, fglNor malPointer, fglPopClientAt-
trib, fglPushClientAttrib, fgl TexCoor dPointer, fglVertexPointer

July 22, 1997 Page 2

FGLCOPYPIXELS() UNIX System V FGLCOPYPIXELS()

NAME

fglCopyPixels — copy pixelsin the frame buffer

FORTRAN SPECIFICATION

SUBROUTINE fglCopyPixels(INTEGER*4 x,

INTEGER*4 Y,
INTEGER* 4 width,
INTEGER* 4 height,
INTEGER* 4 type)
delim $$
PARAMETERS
Xy

Specify the window coordinates of the lower left corner of the rectangular region of pixels to be
copied.

width, height
Specify the dimensions of the rectangular region of pixelsto be copied. Both must be nonnegative.

type
Specifies whether color values, depth values, or stencil values are to be copied. Symbolic constants
GL_COLOR, GL_DEPTH, and GL_STENCIL are accepted.

DESCRIPTION

Page 1

fglCopyPixels copies a screen-aligned rectangle of pixels from the specified frame buffer location to a
region relative to the current raster position. Its operation is well defined only if the entire pixel source
region is within the exposed portion of the window. Results of copies from outside the window, or from
regions of the window that are not exposed, are hardware dependent and undefined.

x and y specify the window coordinates of the lower left corner of the rectangular region to be copied.
width and height specify the dimensions of the rectangular region to be copied. Both width and height must
not be negative.

Several parameters control the processing of the pixel data while it is being copied. These parameters are
set with three commands:. fglPixelTransfer, fglPixelMap, and fglPixelZoom. This reference page
describes the effects on fglCopyPixels of most, but not all, of the parameters specified by these three com-
mands.

fglCopyPixels copies values from each pixel with the lower left-hand corner at (x + i, y + i) for
O<i<width and 0<j<height. This pixel is said to be the ith pixel in the jth row. Pixels are copied
in row order from the lowest to the highest row, Ieft to right in each row.

type specifies whether color, depth, or stencil dataisto be copied. The details of the transfer for each data
type are as follows:

GL_COLOR Indices or RGBA colors are read from the buffer currently specified as the read source
buffer (see fglReadBuffer). If the GL isin color index mode, each index that is read
from this buffer is converted to a fixed-point format with an unspecified number of bits
to the right of the binary point. Each index is then shifted left by GL_INDEX_SHIFT
bits, and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift
is to the right. In either case, zero bits fill otherwise unspecified bit locations in the
result. If GL_MAP_COLOR istrue, the index is replaced with the value that it refer-
ences in lookup table GL_PIXEL_MAP_|I_TO_l. Whether the lookup replacement of
the index is done or not, the integer part of the index is then ANDed with $2 sup b -1,
where b is the number of bitsin a color index buffer.

July 22, 1997

FGLCOPYPIXELS()

GL_DEPTH

GL_STENCIL

UNIX System V FGLCOPYPIXELS()

If the GL isin RGBA mode, the red, green, blue, and alpha components of each pixel
that is read are converted to an internal floating-point format with unspecified precision.
The conversion maps the largest representable component value to 1.0, and component
value 0 to 0.0. The resulting floating-point color values are then multiplied by
GL _c SCALE and added to GL_c BIAS, where ¢ is RED, GREEN, BLUE, and
ALPHA for the respective color components. The results are clamped to the range [0,1].
If GL_MAP_COLOR istrue, each color component is scaled by the size of lookup
table GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that
table. cisR, G, B, or A.

The GL then converts the resulting indices or RGBA colors to fragments by attaching
the current raster position z coordinate and texture coordinates to each pixel, then assign-
ing window coordinates ($x subr + i,y subr + j$), where ($x sub r , y sub r$) is the
current raster position, and the pixel was the ith pixel in the jth row. These pixel
fragments are then treated just like the fragments generated by rasterizing points, lines,
or polygons. Texture mapping, fog, and all the fragment operations are applied before
the fragments are written to the frame buffer.

Depth values are read from the depth buffer and converted directly to an interna
floating-point format with unspecified precision. The resulting floating-point depth
value is then multiplied by GL_DEPTH_SCALE and added to GL_DEPTH_BIAS.
Theresult is clamped to the range [0,1].

The GL then converts the resulting depth components to fragments by attaching the
current raster position color or color index and texture coordinates to each pixel, then
assigning window coordinates ($x subr + i,y subr +j$), where ($x subr , y sub r$) is
the current raster position, and the pixel was the ith pixel in the jth row. These
pixel fragments are then treated just like the fragments generated by rasterizing points,
lines, or polygons. Texture mapping, fog, and all the fragment operations are applied
before the fragments are written to the frame buffer.

Stencil indices are read from the stencil buffer and converted to an internal fixed-point
format with an unspecified number of bits to the right of the binary point. Each fixed-
point index is then shifted left by GL_INDEX_SHIFT bits, and added to
GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift isto theright. In
either case, zero bits fill otherwise unspecified bit locations in the result. |If
GL_MAP_STENCIL istrue, the index is replaced with the value that it references in
lookup table GL_PIXEL_MAP_S TO_S. Whether the lookup replacement of the
index is done or not, the integer part of the index is then ANDed with $2 sup b -13,
where b is the number of bits in the stencil buffer. The resulting stencil indices are
then written to the stencil buffer such that the index read from the ith location of the
jth row iswritten to location ($x sub r + i,y subr + j$), where ($x subr, y sub r$) is
the current raster position. Only the pixel ownership test, the scissor test, and the stencil
writemask affect these write operations.

The rasterization described thus far assumes pixel zoom factors of 1.0. If

fglPixelZoom is used to change the x and y pixel zoom factors, pixels are converted to fragments as
follows. If ($x sub r$, Sy sub r$) isthe current raster position, and a given pixel isin the ith location in
the jth row of the source pixel rectangle, then fragments are generated for pixels whose centers are in the
rectangle with corners at

July 22, 1997

($x subr +zoom sub x i$, By subr + zoom suby j$)
and

($x subr+zoomsubx (i + 1)$, $y subr +zoomsuby (j + 1)$)

Page 2

FGLCOPYPIXELS() UNIX System V FGLCOPYPIXELS()

where $zoom sub x$ is the value of GL_ZOOM _X and $zoom sub y$ isthe value of GL_ZOOM _Y.

EXAMPLES
To copy the color pixel in the lower left corner of the window to the current raster position, use gl CopyPix-
€ls(0,0,1,1, GL_COLOR);

NOTES
Modes specified by fglPixel Stor e have no effect on the operation of fglCopyPixels.

ERRORS
GL_INVALID_ENUM isgenerated if type is not an accepted value.

GL_INVALID_VALUE isgenerated if either width or height is negative.
GL_INVALID_OPERATION isgenerated if typeis GL_DEPTH and there is no depth buffer.
GL_INVALID_OPERATION isgenerated if typeis GL_STENCIL and there is no stencil buffer.

GL_INVALID_OPERATION is generated if fglCopyPixels is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_CURRENT_RASTER_POSITION
fglGet with argument GL_CURRENT_RASTER_POSITION_VALID

SEE ALSO
fglDepthFunc, fglDrawBuffer, fglDrawPixels, fglPixelMap, fglPixelTransfer, fglPixelZoom,
fglRaster Pos, fglReadBuffer, fglReadPixels, fglStencilFunc

Page 3 July 22, 1997

FGLCOPYTEXIMAGELD () UNIX System V FGLCOPYTEXIMAGELD ()

NAME

fglCopyTexlmagelD - copy pixelsinto a 1D texture image

FORTRAN SPECIFICATION

SUBROUTINE fglCopyTexl magelD(INTEGER* 4 target,
INTEGER*4 level,
INTEGER* 4 internal Format,

INTEGER*4 X,
INTEGER*4 y,
INTEGER* 4 width,
INTEGER*4 border)

delim $$

PARAMETERS
target Specifies the target texture. Must be GL_TEXTURE_1D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.

internalFormat Specifies the internal format of the texture. Must be one of the following symbolic con-
stants: GL_ALPHA, GL_ALPHA4, GL_ALPHAS8, GL_ALPHA12, GL_ALPHA1S6,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCES,
GL_LUMINANCE12, GL_LUMINANCE1S, GL_LUMINANCE_ALPHA,
GL_LUMINANCE4 ALPHA4, GL_LUMINANCEG6 _ALPHA2,
GL_LUMINANCES8 ALPHAS, GL_LUMINANCE12 ALPHAA4,
GL_LUMINANCE12 ALPHA12, GL_LUMINANCE16 ALPHA1S6,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8 GL_INTENSITY12,
GL_INTENSITY16, GL_RGB, GL_R3 G3 B2, GL_RGB4, GL_RGB5, GL_RGBS,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5 Al, GL_RGBAS8,GL_RGB10 A2, GL_RGBA12, or GL_RGBA1S6.

X,y Specify the window coordinates of the left corner of the row of pixelsto be copied.
width Specifies the width of the texture image. Must be 0 or $2**n "+~ 2*$border for some
integer n. The height of the textureimageis 1.
border Specifies the width of the border. Must be either O or 1.
DESCRIPTION

NOTES

Page 1

fglCopyTexImagelD defines a one-dimensional texture image with pixels from the current
GL_READ_BUFFER.

The screen-aligned pixel row with left corner at $("x", "y")$ and with alength of $'width""+"2"*™border"$
defines the texture array at the mipmap level specified by level. internalFormat specifies the internal for-
mat of the texture array.

The pixelsin the row are processed exactly as if fglCopyPixels had been called, but the process stops just
before final conversion. At this point all pixel component values are clamped to the range [0, 1] and then
converted to the texture' sinternal format for storage in the texel array.

Pixel ordering is such that lower x screen coordinates correspond to lower texture coordinates.

If any of the pixels within the specified row of the current GL_READ BUFFER are outside the window
associated with the current rendering context, then the values obtained for those pixels are undefined.

fglCopyTexImagelD isavailable only if the GL versionis 1.1 or greater.

July 22, 1997

FGLCOPYTEXIMAGELD () UNIX System V FGLCOPYTEXIMAGELD ()

Texturing has no effect in color index mode.
1, 2, 3, and 4 are not accepted values for internal Format.
An image with O width indicatesa NULL texture.

ERRORS
GL_INVALID_ENUM isgenerated if target is not one of the allowable values.

GL_INVALID_VALUE isgenerated if level is lessthan 0.

GL_INVALID_VALUE may be generated if level is greater than $log sub 2 max$, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE isgenerated if internalFormat is not an allowable value.

GL_INVALID VALUE is generated if width is less than O or greater than 2 +
GL_MAX TEXTURE_SIZE, or if it cannot be represented as $2 ** n "+ 2™*"("border")$ for some
integer value of n.

GL_INVALID_VALUE isgenerated if border isnot O or 1.

GL_INVALID_OPERATION is generated if fglCopyTexImagelD is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGetTexI mage
fgll sEnabled with argument GL_TEXTURE_1D

SEE ALSO
fglCopyPixels, fglCopyTexlmage2D, fglCopyTexSublmagelD, fglCopyTexSublmage2D, fglPixel-
Store, fglPixel Transfer, fglTexEnv, fgl TexGen, fgl Texl magelD, fglTexlmage2D, fglTexSublmagelD,
fgl TexSublmage2D,
fgl TexParameter

July 22, 1997 Page 2

FGLCOPYTEXIMAGE2D () UNIX System V FGLCOPYTEXIMAGE2D ()

NAME

fglCopyTexl mage2D - copy pixelsinto a 2D texture image

FORTRAN SPECIFICATION

SUBROUTINE fglCopyTexI mage2D(INTEGER* 4 target,
INTEGER* 4 level,
INTEGER* 4 internal Format,

INTEGER*4 X,
INTEGER*4 y,
INTEGER* 4 width,
INTEGER*4 height,
INTEGER*4 border)

delim $$

PARAMETERS
target Specifies the target texture. Must be GL_TEXTURE_2D.
level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.

internalFormat Specifies the internal format of the texture. Must be one of the following symbolic con-
stants: GL_ALPHA, GL_ALPHA4, GL_ALPHAS8, GL_ALPHA12, GL_ALPHA1S6,
GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCES,
GL_LUMINANCE12, GL_LUMINANCE1S, GL_LUMINANCE_ALPHA,
GL_LUMINANCE4 ALPHA4, GL_LUMINANCEG6 _ALPHA2,
GL_LUMINANCES8 ALPHAS, GL_LUMINANCE12 ALPHAA4,
GL_LUMINANCE12 ALPHA12, GL_LUMINANCE16 ALPHA1S6,
GL_INTENSITY, GL_INTENSITY4, GL_INTENSITY8 GL_INTENSITY12,
GL_INTENSITY16, GL_RGB, GL_R3 G3 B2, GL_RGB4, GL_RGB5, GL_RGBS,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4,
GL_RGB5 Al, GL_RGBAS8,GL_RGB10 A2, GL_RGBA12, or GL_RGBA1S6.

X,y Specify the window coordinates of the lower |eft corner of the rectangular region of pixels
to be copied.

width Specifies the width of the texture image. Must be 0 or $2**n "+ 2*$horder for some
integer n.

height Specifies the height of the texture image. Must be 0 or $2**m "+~ 2*$border for some
integer m.

border Specifies the width of the border. Must be either O or 1.

DESCRIPTION

Page 1

fglCopyTexImage2D defines a two-dimensional texture image with pixels from the current
GL_READ_BUFFER.

The screen-aligned pixel rectangle with lower left corner at (x, y) and with a width of
width$™+ 2™ $border and a height of height$ ™+ 2™*"$border defines the texture array at the mipmap level
specified by level. internalFormat specifiesthe internal format of the texture array.

The pixelsin the rectangle are processed exactly as if fglCopyPixels had been called, but the process stops
just before final conversion. At this point all pixel component values are clamped to the range $[0,1]$ and
then converted to the texture’ s internal format for storage in the texel array.

Pixel ordering is such that lower x and y screen coordinates correspond to lower s and t texture
coordinates.

July 22, 1997

FGLCOPYTEXIMAGE2D () UNIX System V FGLCOPYTEXIMAGE2D ()

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the win-
dow associated with the current rendering context, then the values obtained for those pixels are undefined.

NOTES
fglCopyTexIlmage2D is available only if the GL versionis 1.1 or greater.

Texturing has no effect in color index mode.
1, 2, 3, and 4 are not accepted values for internal Format.
An image with height or width of O indicatesa NULL texture.

ERRORS
GL_INVALID_ENUM is generated if target isnot GL_TEXTURE_2D.

GL_INVALID_VALUE isgenerated if level islessthan O.

GL_INVALID_VALUE may be generated if level is greater than $log sub 2 max$, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width or height is less than O, greater than
$27+"3GL_MAX_TEXTURE_SIZE, or if width or height cannot be represented as $2**k “+~ 2™*~$bor der
for some integer k.

GL_INVALID_VALUE isgenerated if border isnot O or 1.
GL_INVALID_VALUE isgenerated if internalFormat is not one of the allowable values.

GL_INVALID_OPERATION is generated if fglCopyTexlmage2D is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGetTexI mage
fgll sEnabled with argument GL_TEXTURE_2D

SEE ALSO
fglCopyPixels, fglCopyTexlmagelD, fglCopyTexSublmagelD, fglCopyTexSublmage2D, fglPixel-
Store, fglPixelTransfer, fglTexEnv, fgl TexGen, fglTexImagelD, fglTexl mage2D, fglTexSublmagelD,
fgl TexSubl mage2D,
fgl TexPar ameter

July 22, 1997 Page 2

FGLCOPYTEXSUBIMAGE1D () UNIX System V FGLCOPY TEXSUBIMAGEI1D()

NAME

fglCopyTexSublmagelD - copy a one-dimensional texture subimage

FORTRAN SPECIFICATION

SUBROUTINE fglCopyTexSubl magelD(INTEGER* 4 target,
INTEGER*4 level,

INTEGER* 4 xoffset,
INTEGER*4 X,
INTEGER*4 Yy,
INTEGER*4 width)
delim $$
PARAMETERS

target Specifiesthe target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level O is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies the texel offset within the texture array.
X,y Specify the window coordinates of the left corner of the row of pixelsto be copied.
width Specifies the width of the texture subimage.

DESCRIPTION

NOTES

fglCopyTexSublmagelD replaces a portion of a one-dimensional texture image with pixels from the
current GL_READ_BUFFER (rather than from main memory, asisthe case for fgl TexSubl magelD).

The screen-aligned pixel row with left corner at (x, y), and with length width replaces the portion of the tex-

ture array with x indices xoffset through $"xoffset" “+” "width" "=~ 1$, inclusive. The destination in the tex-
ture array may not include any texels outside the texture array as it was originally specified.

The pixelsin the row are processed exactly as if fglCopyPixels had been called, but the process stops just
before final conversion. At this point all pixel component values are clamped to the range [0, 1] and then
converted to the texture' s internal format for storage in the texel array.

It is not an error to specify a subtexture with zero width, but such a specification has no effect. If any of
the pixels within the specified row of the current GL_READ_BUFFER are outside the read window asso-
ciated with the current rendering context, then the values obtained for those pixels are undefined.

No change is made to the internalformat, width, or border parameters of the specified texture array or to
texel values outside the specified subregion.

fglCopyTexSublmagelD is available only if the GL versionis 1.1 or greater.
Texturing has no effect in color index mode.

foglPixelStore and fglPixelTransfer modes affect texture images in exactly the way they affect
fglDrawPixels.

ERRORS

Page 1

GL_INVALID_ENUM isgenerated if targetisnot GL_TEXTURE_1D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
fgl TexlmagelD or fglCopy T exl magelD operation.

GL_INVALID_VALUE isgenerated if level islessthan O.

GL_INVALID_VALUE may be generated if level$>log sub 2$ max, where max is the returned value of
GL_MAX_TEXTURE_SIZE.

July 22, 1997

FGLCOPYTEXSUBIMAGE1D () UNIX System V FGLCOPY TEXSUBIMAGEI1D()

GL_INVALID_VALUE isgenerated if y$ "<" "-b$ or if width$ “<” "-b$, where b is the border width of
the texture array.

GL_INVALID_VALUE is generated if $"xoffset" "<” "-b$, or $("xoffset""+""width") "> (w-b)$, where
w is the GL_TEXTURE_WIDTH, and b is the GL_TEXTURE_BORDER of the texture image
being modified. Note that w includes twice the border width.

ASSOCIATED GETS
fglGetTexI mage
fgll sEnabled with argument GL_TEXTURE_1D

SEE ALSO
fglCopyPixels, fglCopyTexImagelD, fglCopyTexlmage2D, fglCopyTexSublmage2D, fglPixelStore,
foglPixelTransfer, fglTexEnv, fglTexGen, fglTexImagelD, fglTexImage2D, fglTexParameter,

fgl TexSubl magelD, fgl T exSubl mage2D

July 22, 1997 Page 2

FGLCOPY TEXSUBIMAGE2D () UNIX System V FGLCOPY TEXSUBIMAGE2D ()

NAME

fglCopyTexSubl mage2D - copy atwo-dimensional texture subimage

FORTRAN SPECIFICATION

SUBROUTINE fglCopyT exSubl mage2D(INTEGER* 4 target,
INTEGER* 4 level,
INTEGER* 4 xoffset,
INTEGER* 4 yoffset,
INTEGER*4 x,
INTEGER*4 Yy,
INTEGER* 4 width,
INTEGER* 4 height)

delim $$

PARAMETERS

target Specifiesthe target texture. Must be GL_TEXTURE_2D

level Specifies the level-of-detail number. Level O is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies atexel offset in the x direction within the texture array.
yoffset Specifies atexel offset in they direction within the texture array.

X,y Specify the window coordinates of the lower left corner of the rectangular region of pixelsto be
copied.

width Specifies the width of the texture subimage.
height Specifies the height of the texture subimage.

DESCRIPTION

NOTES

Page 1

fglCopyTexSublmage2D replaces a rectangular portion of a two-dimensional texture image with pixels
from the current GL_READ BUFFER (rather than from man memory, as is the case for
fgl TexSubl mage2D).

The screen-aligned pixel rectangle with lower left corner at (X, y) and with width width and height height
replaces the portion of the texture array with x indices xoffset through xoffset$™+ $width$™-"$1, inclusive,
and y indices yoffset through yoffset$ ™+ $height$™-"$1, inclusive, at the mipmap level specified by level.

The pixelsin the rectangle are processed exactly as if fglCopyPixels had been called, but the process stops
just before final conversion. At this point, all pixel component values are clamped to the range [0, 1] and
then converted to the texture’ s internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array as it was
originaly specified. It is not an error to specify a subtexture with zero width or height, but such a
specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the read
window associated with the current rendering context, then the values obtained for those pixels are
undefined.

No change is made to the internalformat, width, height, or border parameters of the specified texture array
or to texel values outside the specified subregion.

fglCopyTexSublmage2D is available only if the GL versionis 1.1 or greater.
Texturing has no effect in color index mode.

July 22, 1997

FGLCOPY TEXSUBIMAGE2D () UNIX System V FGLCOPY TEXSUBIMAGE2D ()

foglPixelStore and fglPixelTransfer modes affect texture images in exactly the way they affect
fglDrawPixels.

ERRORS
GL_INVALID_ENUM isgenerated if target isnot GL_TEXTURE_2D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
fgl Texlmage2D or fglCopy T exl mage2D operation.

GL_INVALID_VALUE isgenerated if level islessthan 0.

GL_INVALID_VALUE may be generated if level is greater than $log sub 2 max$, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE isgenerated if x$ <" "-b$ or if y$ "<" "-b$, where b is the border width of the
texture array.

GL_INVALID_VALUE is generated if $"'xoffset" "< -b$, (xoffset$ ™+ " $width)$>"(w ~-"b)$, yoffset$<”
“-b$, or (yoffset$ ™+ $height)$>"(h "-"b)$, where w is the GL_TEXTURE_WIDTH, h is the
GL_TEXTURE_HEIGHT, and b is the GL_TEXTURE_BORDER of the texture image being
modified. Note that w and h include twice the border width.

GL_INVALID_OPERATION is generated if fglCopyTexSublmage2D is executed between the execu-
tion of fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
folGetTexl mage
fgllsEnabled with argument GL_TEXTURE_2D

SEE ALSO
fglCopyPixels, fglCopyTexImagelD, fglCopyTexlmage2D, fglCopyTexSublmagelD, fglPixelStore,
foglPixelTransfer, fglTexEnv, fglTexGen, fglTeximagelD, fglTeximage2D, fglTexParameter,
fgl TexSubl magelD, fgl T exSubl mage2D

July 22, 1997 Page 2

FGLCOPY TEXSUBIMAGE2D () UNIX System V FGLCOPY TEXSUBIMAGE2D ()

Page 3 July 22, 1997

FGLCULLFACE() UNIX System V FGLCULLFACE()

NAME
fglCullFace — specify whether front- or back-facing facets can be culled

FORTRAN SPECIFICATION
SUBROUTINE fglCullFace(INTEGER*4 mode)

PARAMETERS
mode Specifies whether front- or back-facing facets are candidates for culling. Symbolic constants
GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK are accepted. The initia value is
GL_BACK.

DESCRIPTION
fglCullFace specifies whether front- or back-facing facets are culled (as specified by mode) when facet
culling is enabled. Facet culling isinitially disabled. To enable and disable facet culling, call the fglEnable
and fglDisable commands with the argument GL_CULL_FACE. Facets include triangles, quadrilaterals,
polygons, and rectangles.

fglFrontFace specifies which of the clockwise and counterclockwise facets are front-facing and back-
facing. SeefglFrontFace.

NOTES
If modeis GL_FRONT_AND_BACK, no facets are drawn, but other primitives such as points and lines
are drawn.

ERRORS
GL_INVALID_ENUM isgenerated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if fglCullFace is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fgllsEnabled with argument GL_CULL_FACE
fglGet with argument GL_CULL_FACE_MODE

SEE ALSO
fglEnable, fglFrontFace

Page 1 July 22, 1997

FGLDELETELISTS() UNIX System V FGLDELETELISTS()

NAME
foglDeletel ists — delete a contiguous group of display lists

FORTRAN SPECIFICATION
SUBROUTINE fglDeleteLists(INTEGER*4 list,
INTEGER*4 range)

PARAMETERS
list Specifiesthe integer name of thefirst display list to delete.

range Specifiesthe number of display liststo delete.

DESCRIPTION
fglDeletel ists causes a contiguous group of display lists to be deleted. list is the name of the first display
list to be deleted, and range is the number of display liststo delete. All display listsd with list< d < list +
range — 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are available for reuse
at alater time. Names within the range that do not have an associated display list are ignored. If rangeis
0, nothing happens.

ERRORS
GL_INVALID_VALUE isgenerated if rangeis negative.

GL_INVALID_OPERATION is generated if fglDeletel ists is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

SEE ALSO
folCallList, fglCallLists, fglGenLists, fgllsList, fglNewL ist

Page 1 July 22, 1997

FGLDELETETEXTURES() UNIX System V FGLDELETETEXTURES()

NAME
fglDeleteT extur es — delete named textures

FORTRAN SPECIFICATION
SUBROUTINE fglDeleteT extures(INTEGER*4 n,
CHARACTER*8 textures)

PARAMETERS
n Specifies the number of textures to be deleted.

textures Specifiesan array of textures to be deleted.

DESCRIPTION
foglDeleteTextures deletes n textures named by the elements of the array textures. After a texture is
deleted, it has no contents or dimensionality, and its name is free for reuse (for example by fglGenTex-
tures). If atexturethat is currently bound is deleted, the binding reverts to O (the default texture).

foglDeleteTextures silently ignores 0's and names that do not correspond to existing textures.

NOTES
fglDeleteTextures isavailable only if the GL versionis 1.1 or greater.

ERRORS
GL_INVALID_VALUE isgenerated if nisnegative.

GL_INVALID_OPERATION is generated if fglDeleteTextures is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
follsTexture

SEE ALSO
fglAreTexturesResident, fglBindTexture, fglCopyTexlmagelD, fglCopyTexlmage2D, fglGenTex-
tures, fglGet, fglGetTexParameter, fglPrioritizeTextures, fglTexlmagelD, fglTexImage2D, fglTex-
Parameter

Page 1 July 22, 1997

FGLDEPTHFUNC() UNIX System V FGLDEPTHFUNC()

NAME
fglDepthFunc — specify the value used for depth buffer comparisons

FORTRAN SPECIFICATION
SUBROUTINE fglDepthFunc(INTEGER*4 func)

PARAMETERS
func Specifies the depth comparison function. Symbolic constants GL_NEVER, GL_LESS,
GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and
GL_ALWAYSareaccepted. Theinitial valueisGL_LESS.

DESCRIPTION
fglDepthFunc specifies the function used to compare each incoming pixel depth value with the depth value
present in the depth buffer. The comparison is performed only if depth testing is enabled. (See fglEnable
and fglDisable of GL_DEPTH_TEST.)

func specifies the conditions under which the pixel will be drawn. The comparison functions are as fol-

lows:
GL_NEVER Never passes.
GL_LESS Passes if the incoming depth value is less than the stored depth value.

GL_EQUAL Passes if the incoming depth value is equal to the stored depth value.
GL_LEQUAL Passes if the incoming depth value is less than or equal to the stored depth value.
GL_GREATER Passesif theincoming depth value is greater than the stored depth value.
GL_NOTEQUAL Passesif theincoming depth value is not equal to the stored depth value.
GL_GEQUAL Passes if the incoming depth value is greater than or equal to the stored depth value.
GL_ALWAYS Always passes.

The initial value of funcis GL_LESS. Initidly, depth testing is disabled. Even if the depth buffer exists
and the depth mask is non-zero, the depth buffer is not updated if the depth test is disabled.

ERRORS
GL_INVALID_ENUM isgenerated if funcis not an accepted value.

GL_INVALID_OPERATION is generated if fglDepthFunc is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_DEPTH_FUNC
fgll sEnabled with argument GL_DEPTH_TEST

SEE ALSO
fglDepthRange, fglEnable, fglPolygonOffset

Page 1 July 22, 1997

FGLDEPTHMASK () UNIX System V FGLDEPTHMASK ()

NAME
fglDepthM ask — enable or disable writing into the depth buffer

FORTRAN SPECIFICATION
SUBROUTINE fglDepthM ask(LOGICAL*1 flag)

PARAMETERS
flag Specifies whether the depth buffer is enabled for writing. If flagis GL_FAL SE, depth buffer writing
isdisabled. Otherwise, itisenabled. Initialy, depth buffer writing is enabled.

DESCRIPTION
fglDepthMask specifies whether the depth buffer is enabled for writing. If flag is GL_FALSE, depth
buffer writing is disabled. Otherwise, itisenabled. Initialy, depth buffer writing is enabled.

ERRORS
GL_INVALID_OPERATION isgenerated if fglDepthM ask is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_DEPTH_WRITEMASK

SEE ALSO
fglColor M ask, fglDepthFunc, fglDepthRange, fgllndexM ask, fglStencilM ask

Page 1 July 22, 1997

FGLDEPTHRANGE() UNIX System V FGLDEPTHRANGE()

NAME

fglDepthRange — specify mapping of depth values from normalized device coordinates to window coordi-
nates

FORTRAN SPECIFICATION
SUBROUTINE fglDepthRange(REAL*4 zNear,
REAL*4 zFar)

delim $$

PARAMETERS
ZNear Specifies the mapping of the near clipping plane to window coordinates. Theinitial valueisO.

ZFar Specifies the mapping of the far clipping plane to window coordinates. Theinitial valueis 1.

DESCRIPTION
After clipping and division by w, depth coordinates range from -1 to 1, corresponding to the near and far
clipping planes. fglDepthRange specifies a linear mapping of the normalized depth coordinates in this
range to window depth coordinates. Regardless of the actual depth buffer implementation, window coordi-
nate depth values are treated as though they range from O through 1 (like color components). Thus, the
values accepted by fglDepthRange are both clamped to this range before they are accepted.

The setting of (0,1) maps the near plane to 0 and the far plane to 1. With this mapping, the depth buffer
rangeisfully utilized.

NOTES
It is not necessary that zZNear be less than zFar. Reverse mappings such as $'zNear" = 13, and $'zFar" =
0$ are acceptable.

ERRORS
GL_INVALID_OPERATION is generated if fglDepthRange is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_DEPTH_RANGE

SEE ALSO
fglDepthFunc, fglPolygonOffset, fglViewport

Page 1 July 22, 1997

FGLDRAWARRAYS() UNIX System V FGLDRAWARRAYS()

NAME

fglDrawArrays — render primitives from array data

FORTRAN SPECIFICATION

SUBROUTINE fglDrawArrays(INTEGER*4 mode,

INTEGER*4 first,
INTEGER*4 count)
delim $$
PARAMETERS
mode

Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,
GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POL YGON are accepted.

first Specifiesthe starting index in the enabled arrays.

count
Specifies the number of indices to be rendered.

DESCRIPTION

NOTES

fglDrawArrays specifies multiple geometric primitives with very few subroutine calls. Instead of calling a
GL procedure to pass each individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertexes, normals, and colors and use them to construct a sequence of primi-
tiveswith asingle call to fgiDrawArrays.

When fglDrawArrays is caled, it uses count sequential elements from each enabled array to construct a
sequence of geometric primitives, beginning with element first. mode specifies what kind of primitives are
constructed, and how the array elements construct those primitives. If GL_VERTEX_ARRAY is not
enabled, no geometric primitives are generated.

Vertex attributes that are modified by fglDrawArrays have an unspecified value after fglDrawArrays
returns. For example, if GL_COLOR_ARRAY isenabled, the value of the current color is undefined after
fglDrawArrays executes. Attributes that aren’t modified remain well defined.

fglDrawArraysisavailable only if the GL version is 1.1 or greater.

fglDrawArrays isincluded in display lists. If fglDrawArrays is entered into a display list, the necessary
array data (determined by the array pointers and enables) is also entered into the display list. Because the
array pointers and enables are client-side state, their values affect display lists when the lists are created,
not when the lists are executed.

ERRORS

GL_INVALID_ENUM isgenerated if mode is not an accepted value.
GL_INVALID_VALUE isgenerated if count is negative.

GL_INVALID_OPERATION is generated if fglDrawArrays is executed between the execution of
fglBegin and the corresponding fglEnd.

SEE ALSO

Page 1

fglArrayElement, fglColor Pointer, fglDrawElements, fglEdgeFlagPointer,
foglGetPointerv, fgll ndexPointer, fgll nterleavedArrays, fgiNor malPointer,
fglTexCoor dPointer, fglVertexPointer

July 22, 1997

FGLDRAWBUFFER() UNIX System V FGLDRAWBUFFER()

NAME
fglDrawBuffer — specify which color buffers are to be drawn into

FORTRAN SPECIFICATION
SUBROUTINE fglDrawBuffer (INTEGER*4 mode)

delim $$

PARAMETERS
mode Specifies up to four color buffers to be drawn into. Symbolic constants GL_NONE,
GL_FRONT_LEFT, GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT,
GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, GL_FRONT_AND_BACK, and GL_AUXi,
where i is between 0 and *‘GL_AUX_BUFFERS'’ -1, are accepted (GL_AUX_BUFFERS is not
the upper limit; use fglGet to query the number of available aux buffers.) The initial value is
GL_FRONT for single-buffered contexts, and GL_BACK for double-buffered contexts.

DESCRIPTION
When colors are written to the frame buffer, they are written into the color buffers specified by
fglDrawBuffer. The specifications are as follows:

GL_NONE No color buffers are written.

GL_FRONT_LEFT Only the front left color buffer iswritten.

GL_FRONT_RIGHT Only the front right color buffer iswritten.

GL_BACK_LEFT Only the back left color buffer iswritten.

GL_BACK_RIGHT Only the back right color buffer iswritten.

GL_FRONT Only the front left and front right color buffers are written. If there is no
front right color buffer, only the front left color buffer iswritten.

GL_BACK Only the back left and back right color buffers are written. If there is no
back right color buffer, only the back |eft color buffer iswritten.

GL_LEFT Only the front left and back |eft color buffers are written. If there is no back

left color buffer, only the front left color buffer iswritten.

GL_RIGHT Only the front right and back right color buffers are written. If there is no
back right color buffer, only the front right color buffer iswritten.

GL_FRONT_AND_BACK All the front and back color buffers (front Ieft, front right, back left, back
right) are written. If there are no back color buffers, only the front left and
front right color buffers are written. If there are no right color buffers, only
the front left and back left color buffers are written. If there are no right or
back color buffers, only the front left color buffer iswritten.

GL_AUKXi Only auxiliary color buffer i iswritten.

If more than one color buffer is selected for drawing, then blending or logical operations are computed and
applied independently for each color buffer and can produce different results in each buffer.

Monaoscopic contexts include only left buffers, and stereoscopic contexts include both left and right buffers.
Likewise, single-buffered contexts include only front buffers, and double-buffered contexts include both
front and back buffers. The context is selected at GL initialization.

NOTES
Itisalwaysthe casethat GL_AUXi= GL_AUXO + i.

ERRORS
GL_INVALID_ENUM isgenerated if mode is not an accepted value.

Page 1 July 22, 1997

FGLDRAWBUFFER() UNIX System V FGLDRAWBUFFER()

GL_INVALID_OPERATION isgenerated if none of the buffers indicated by mode exists.

GL_INVALID_OPERATION isgenerated if fglDrawBuffer isexecuted between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_DRAW_BUFFER
fglGet with argument GL_AUX_BUFFERS

SEE ALSO
fglBlendFunc, fglColor M ask, fgllndexM ask, fglL ogicOp, fglReadBuffer

July 22, 1997 Page 2

FGLDRAWELEMENTS() UNIX System V FGLDRAWELEMENTS()

NAME

fglDrawElements — render primitives from array data

FORTRAN SPECIFICATION

SUBROUTINE fglDrawElements(INTEGER* 4 mode,

INTEGER* 4 count,
INTEGER* 4 type,
CHARACTER*8 indices)
delim $$
PARAMETERS

mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS,
GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and
GL_POLYGON are accepted.

count Specifies the number of elementsto be rendered.

type Specifies the type of the vaues in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

DESCRIPTION

NOTES

fglDrawElements specifies multiple geometric primitives with very few subroutine calls. Instead of calling
a GL function to pass each individual vertex, normal, texture coordinate, edge flag, or color, you can
prespecify separate arrays of vertexes, normals, and so on and use them to construct a sequence of primi-
tiveswith asingle call to fglDrawElements.

When fglDrawElements is called, it uses count sequentia elements from an enabled array, starting at
indices to construct a sequence of geometric primitives. mode specifies what kind of primitives are con-
structed, and how the array elements construct these primitives. If more than one array is enabled, each is
used. If GL_VERTEX_ARRAY isnot enabled, no geometric primitives are constructed.

Vertex attributes that are modified by fglDrawElements have an unspecified value after fglDrawElements
returns. For example, if GL_COLOR_ARRAY isenabled, the value of the current color is undefined after
fglDrawElements executes. Attributes that aren’t modified remain well defined.

fglDrawElementsis available only if the GL versionis 1.1 or greater.

fglDrawElementsisincluded in display lists. If fglDrawElements is entered into a display list, the neces-
sary array data (determined by the array pointers and enables) is also entered into the display list. Because
the array pointers and enables are client-side state, their values affect display lists when the lists are
created, not when the lists are executed.

ERRORS

GL_INVALID_ENUM isgenerated if mode is not an accepted value.
GL_INVALID_VALUE isgenerated if count is negative.

GL_INVALID_OPERATION is generated if fglDrawElements is executed between the execution of
fglBegin and the corresponding fglEnd.

SEE ALSO

Page 1

foglArrayElement, fglColor Pointer, fglDrawArrays, fglEdgeFlagPointer,
foglGetPointerv, fgll ndexPointer, fgll nterleavedArrays, fgiINor malPointer,
fglTexCoor dPointer, fglVertexPointer

July 22, 1997

FGLDRAWELEMENTS() UNIX System V FGLDRAWELEMENTS()

July 22, 1997 Page 2

FGLDRAWPIXELS() UNIX System V FGLDRAWPIXELS()

NAME

fglDrawPixels — write a block of pixelsto the frame buffer

FORTRAN SPECIFICATION

SUBROUTINE fglDrawPixels(INTEGER* 4 width,

INTEGER*4 height,
INTEGER* 4 format,
INTEGER* 4 type,
CHARACTER*8 pixels)

delim $$

PARAMETERS
width, height
Specify the dimensions of the pixel rectangle to be written into the frame buffer.
format Specifies the format of the pixel data Symbolic constants GL_COLOR_INDEX,

GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RGBA, GL_RED,
GL_GREEN, GL BLUE, GL_ALPHA, GL_RGB, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for pixels. Symbolic constants GL_UNSIGNED _BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED _SHORT, GL_SHORT, GL_UNSIGNED_INT,
GL_INT, and GL_FL OAT are accepted.

pixels Specifies a pointer to the pixel data.

DESCRIPTION

Page 1

fglDrawPixels reads pixel data from memory and writes it into the frame buffer relative to the current ras-
ter position. Use fglRasterPos to set the current raster position; use fglGet with argument
GL_CURRENT_RASTER_POSITION to query the raster position.

Several parameters define the encoding of pixel datain memory and control the processing of the pixel data
before it is placed in the frame buffer. These parameters are set with four commands: fglPixelStore,
fglPixelTransfer, fglPixelMap, and fglPixelZoom. This reference page describes the effects on
fglDrawPixels of many, but not all, of the parameters specified by these four commands.

Data is read from pixels as a sequence of signed or unsigned bytes, signed or unsigned shorts, signed or
unsigned integers, or single-precision floating-point values, depending on type. Each of these bytes, shorts,
integers, or floating-point values is interpreted as one color or depth component, or one index, depending
on format. Indices are always treated individually. Color components are treated as groups of one, two,
three, or four values, again based on format. Both individual indices and groups of components are
referred to as pixels. If typeis GL_BITMAP, the data must be unsigned bytes, and format must be either
GL_COLOR_INDEX or GL_STENCIL_INDEX. Each unsigned byte is treated as eight 1-bit pixels,
with bit ordering determined by GL_UNPACK _L SB_FIRST (see fglPixelStore).

width$times$height pixels are read from memory, starting at location pixels. By default, these pixels are
taken from adjacent memory locations, except that after all width pixels are read, the read pointer is
advanced to the next four-byte boundary. The four-byte row alignment is specified by fglPixelStore with
argument GL_UNPACK_ALIGNMENT, and it can be set to one, two, four, or eight bytes. Other pixel
store parameters specify different read pointer advancements, both before the first pixel is read and after all
width pixelsare read. Seethe

fglPixel Stor e reference page for details on these options.

The width$times$height pixels that are read from memory are each operated on in the same way, based on
the values of severa parameters specified by fglPixelTransfer and fglPixelMap. The details of these
operations, as well as the target buffer into which the pixels are drawn, are specific to the format of the pix-
els, as specified by format. format can assume one of eleven symbolic values:

July 22, 1997

FGLDRAWPIXELS() UNIX System V FGLDRAWPIXELS()

GL_COLOR_INDEX
Each pixel is a single value, a color index. It is converted to fixed-point format, with an
unspecified number of bitsto the right of the binary point, regardless of the memory data type.
Floating-point values convert to true fixed-point values. Signed and unsigned integer data is
converted with all fraction bits set to 0. Bitmap data convert to either O or 1.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and added to
GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift isto theright. In either
case, zero bitsfill otherwise unspecified bit locationsin the result.

If the GL isin RGBA mode, the resulting index is converted to an RGBA pixel with the help
of the GL_PIXEL_MAP_| TO R, GL_PIXEL_MAP_| TO G,
GL_PIXEL_MAP_| TO B, and GL_PIXEL_MAP_|_TO_A tables. If the GL is in color
index mode, and if GL_MAP_COLOR is true, the index is replaced with the value that it
references in lookup table GL_PIXEL_MAP_| TO_|. Whether the lookup replacement of
the index is done or not, the integer part of the index is then ANDed with $2 sup b -1$, where
b isthe number of bitsin acolor index buffer.

The GL then converts the resulting indices or RGBA colors to fragments by attaching the
current raster position z coordinate and texture coordinates to each pixel, then assigning x
and y window coordinates to the nth fragment such that

$x subn"="xsubr ™+ n"~ roman mod~ "width"$

$ysubn"="ysubr ™+ |~ n/"width" ~|$

where ($x sub r, y sub r$) isthe current raster position. These pixel fragments are then treated
just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping,
fog, and al the fragment operations are applied before the fragments are written to the frame
buffer.

GL_STENCIL_INDEX
Each pixel is a single value, a stencil index. It is converted to fixed-point format, with an
unspecified number of bitsto the right of the binary point, regardless of the memory data type.
Floating-point values convert to true fixed-point values. Signed and unsigned integer data is
converted with all fraction bits set to 0. Bitmap data convert to either O or 1.

Each fixed-point index is then shifted left by GL _INDEX_SHIFT bits, and added to
GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift isto theright. In either
case, zero bitsfill otherwise unspecified bit locations in the result. If GL_MAP_STENCIL is
true, the index is replaced with the value that it references in lookup table
GL_PIXEL_MAP_S TO_S. Whether the lookup replacement of the index is done or nat, the
integer part of the index is then ANDed with $2 sup b -1$, where b is the number of bitsin
the stencil buffer. The resulting stencil indices are then written to the stencil buffer such that
the nth index is written to location

$xsubn"="x subr "+ n~ roman mod "~ "width"$

$ysubn"="ysubr ™+ | " n/"width" ~|$

where ($x subr, y sub r$) is the current raster position. Only the pixel ownership test, the scissor
test, and the stencil writemask affect these write operations.

GL_DEPTH_COMPONENT
Each pixel is a single-depth component. Floating-point data is converted directly to an internal
floating-point format with unspecified precision. Signed integer data is mapped linearly to the

July 22, 1997 Page 2

FGLDRAWPIXELS() UNIX System V FGLDRAWPIXELS()

Page 3

internal floating-point format such that the most positive representable integer value maps to 1.0,
and the most negative representable value maps to —1.0. Unsigned integer data is mapped simi-
larly: the largest integer value maps to 1.0, and 0 maps to 0.0. The resulting floating-point depth
value is then multiplied by by GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The
result is clamped to the range [0,1].

The GL then converts the resulting depth components to fragments by attaching the current raster
position color or color index and texture coordinates to each pixel, then assigning x and y
window coordinates to the nth fragment such that

$xsubn"="xsubr ™+ n~roman mod "~ "width"$

$ysubn ="y subr "+ |~ n/"width" ~|$

where ($x sub r , y sub r$) is the current raster position. These pixel fragments are then treated
just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
and al the fragment operations are applied before the fragments are written to the frame buffer.

GL_RGBA

Each pixel is a four-component group: for GL_RGBA, the red component is first, followed by
green, followed by blue, followed by alpha. Floating-point values are converted directly to an
internal floating-point format with unspecified precision. Signed integer values are mapped
linearly to the internal floating-point format such that the most positive representable integer value
maps to 1.0, and the most negative representable value maps to —1.0. (Note that this mapping does
not convert O precisely to 0.0.) Unsigned integer data is mapped similarly: the largest integer
value maps to 1.0, and 0 maps to 0.0. The resulting floating-point color values are then multiplied
by GL_c SCALE and added to GL_c BIAS, where c is RED, GREEN, BLUE, and ALPHA for
the respective color components. The results are clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size of lookup table
GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references in that table. cisR, G,
B, or A respectively.

The GL then converts the resulting RGBA colors to fragments by attaching the current raster posi-
tion z coordinate and texture coordinates to each pixel, then assigning x and y window coor-
dinates to the nth fragment such that

$xsubn"="x subr "+ n~ roman mod "~ "width"$

$ysubn~="ysubr ™+ | " n/"width" ~|$

where ($x sub r , y sub r$) is the current raster position. These pixel fragments are then treated
just like the fragments generated by rasterizing points, lines, or polygons. Texture mapping, fog,
and al the fragment operations are applied before the fragments are written to the frame buffer.

GL_RED

Each pixel is a single red component. This component is converted to the internal floating-point
format in the same way the red component of an RGBA pixel is. It is then converted to an RGBA
pixel with green and blue set to 0, and alpha set to 1. After this conversion, the pixel is treated as
if it had been read as an RGBA pixel.

GL_GREEN

Each pixel isasingle green component. This component is converted to the internal floating-point
format in the same way the green component of an RGBA pixel is. It is then converted to an
RGBA pixel with red and blue set to 0, and alpha set to 1. After this conversion, the pixd is
treated asiif it had been read as an RGBA pixel.

July 22, 1997

FGLDRAWPIXELS() UNIX System V FGLDRAWPIXELS()

GL_BLUE
Each pixel is a single blue component. This component is converted to the internal floating-point
format in the same way the blue component of an RGBA pixel is. It is then converted to an
RGBA pixel with red and green set to O, and apha set to 1. After this conversion, the pixel is
treated asiif it had been read as an RGBA pixel.

GL_ALPHA
Each pixel isasingle alpha component. This component is converted to the internal floating-point
format in the same way the apha component of an RGBA pixel is. It is then converted to an
RGBA pixel with red, green, and blue set to 0. After this conversion, the pixel is treated as if it
had been read as an RGBA pixel.

GL_RGB
Each pixel is athree-component group: red first, followed by green, followed by blue. Each com-
ponent is converted to the internal floating-point format in the same way the red, green, and blue
components of an RGBA pixel are. The color triple is converted to an RGBA pixel with alpha set
to 1. After thisconversion, the pixel istreated asif it had been read as an RGBA pixel.

GL_LUMINANCE
Each pixel is a single luminance component. This component is converted to the internal
floating-point format in the same way the red component of an RGBA pixel is. It is then con-
verted to an RGBA pixel with red, green, and blue set to the converted luminance value, and apha
set to 1. After this conversion, the pixel istreated as if it had been read as an RGBA pixel.

GL_LUMINANCE_ALPHA
Each pixel is a two-component group: luminance first, followed by alpha. The two components
are converted to the interna floating-point format in the same way the red component of an
RGBA pixel is. They are then converted to an RGBA pixel with red, green, and blue set to the
converted luminance value, and alpha set to the converted alpha value. After this conversion, the
pixel istreated asif it had been read as an RGBA pixel.

The following table summarizes the meaning of the valid constants for the type parameter:

type corresponding type
GL_UNSIGNED BYTE unsigned 8-bit integer
GL BYTE signed 8-hit integer
GL_BITMAP single bitsin unsigned 8-hit integers
GL_UNSIGNED_SHORT unsigned 16-hit integer
GL_SHORT signed 16-hit integer
GL_UNSIGNED_INT unsigned 32-hit integer
GL_INT 32-bit integer
GL_FLOAT single-precision floating-point

The rasterization described so far assumes pixel zoom factors of 1. If

fglPixelZoom is used to change the x and y pixel zoom factors, pixels are converted to fragments as
follows. If ($x sub r$, $y sub r$) is the current raster position, and a given pixel isin the nth column and
mth row of the pixel rectangle, then fragments are generated for pixels whose centers are in the rectangle
with corners at

($x sub r + zoom sub x n$, By sub r + zoom sub y m$)

($x subr + zoomsub x (n+ 1)$, y subr + zoomsuby (m + 1)$)

July 22, 1997 Page 4

FGLDRAWPIXELS() UNIX System V FGLDRAWPIXELS()

where $zoom sub x$ is the value of GL_ZOOM _X and $zoom sub y$ isthe value of GL_ZOOM _Y.

ERRORS

GL_INVALID_VALUE isgenerated if either width or height is negative.
GL_INVALID_ENUM isgenerated if format or typeis not one of the accepted values.

GL_INVALID_OPERATION is generated if format is GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA, and the GL
isin color index mode.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not either
GL_COLOR_INDEX or GL_STENCIL_INDEX.

GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil
buffer.

GL_INVALID_OPERATION is generated if fglDrawPixels is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGet with argument GL_CURRENT_RASTER_POSITION
fglGet with argument GL_CURRENT_RASTER_POSITION_VALID

SEE ALSO

Page 5

fglAlphaFunc, fgiBlendFunc, fglCopyPixels, fglDepthFunc, fglL ogicOp, fglPixelMap, fglPixelStore,
folPixelTransfer, fglPixelZoom, fglRaster Pos, fglReadPixels, fglScissor, fglStencilFunc

July 22, 1997

FGLEDGEFLAG() UNIX System V FGLEDGEFLAG()

NAME
fglEdgeFlag, fglEdgeFlagv — flag edges as either boundary or nonboundary

FORTRAN SPECIFICATION
SUBROUTINE fglEdgeFlag(LOGICAL*1 flag)

PARAMETERS
flag Specifies the current edge flag value, either GL_TRUE or GL_FALSE. The initia vaue is
GL_TRUE.

FORTRAN SPECIFICATION
SUBROUTINE fglEdgeFlagv(CHARACTER*8 flag)

PARAMETERS
flag Specifies a pointer to an array that contains a single boolean element, which replaces the current
edge flag value.

DESCRIPTION
Each vertex of a polygon, separate triangle, or separate quadrilateral specified between a fglBegin/fglEnd
pair is marked as the start of either a boundary or nonboundary edge. If the current edge flag is true when
the vertex is specified, the vertex is marked as the start of a boundary edge. Otherwise, the vertex is
marked as the start of a nonboundary edge. fglEdgeFlag sets the edge flag bit to GL_TRUE if flag is
GL_TRUE, andto GL _FAL SE otherwise.

The vertices of connected triangles and connected quadrilaterals are always marked as boundary, regard-
less of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if GL_POLYGON_MODE is set to
GL_POINT or GL_LINE. SeefglPolygonM ode.

NOTES
The current edge flag can be updated at any time. In particular, fglEdgeFlag can be called between a call
to fglBegin and the corresponding call to fglEnd.

ASSOCIATED GETS
fglGet with argument GL_EDGE_FLAG

SEE ALSO
fglBegin, fglEdgeFlagPointer, fglPolygonM ode

Page 1 July 22, 1997

FGLEDGEFLAGPOINTER() UNIX System V FGLEDGEFLAGPOINTER()

NAME

fglEdgeFlagPointer — define an array of edge flags

FORTRAN SPECIFICATION

SUBROUTINE fglEdgeFlagPointer (INTEGER* 4 stride,
CHARACTER*8 pointer)

delim $$

PARAMETERS

stride Specifies the byte offset between consecutive edge flags. If strideis O (the initial value), the edge
flags are understood to be tightly packed in the array.

pointer Specifies a pointer to the first edge flag in the array.

DESCRIPTION

NOTES

fglEdgeFlagPointer specifies the location and data format of an array of boolean edge flags to use when
rendering. stride specifies the byte stride from one edge flag to the next allowing vertexes and attributes to
be packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on
some implementations; see fgll nterleavedArrays.)

When an edge flag array is specified, stride and pointer are saved as client-side state.

To enable and disable the edge flag array, call fglEnableClientState and
fglDisableClientState with the argument GL_EDGE_FLAG_ARRAY. If enabled, the edge flag array is
used when fgIDrawArrays, fglDrawElements, or fglArrayElement iscalled.

Use fglDrawArrays to construct a sequence of primitives (all of the same type) from prespecified vertex
and vertex attribute arrays. Use fglArrayElement to specify primitives by indexing vertexes and vertex
attributes and fglDrawElements to construct a sequence of primitives by indexing vertexes and vertex
attributes.

fglEdgeFlagPointer isavailable only if the GL versionis 1.1 or greater.

The edge flag array isinitialy disabled and it won’'t be accessed when
fglArrayElement, fglDrawElements or fglDrawArraysis called.

Execution of fglEdgeFlagPointer is not allowed between the execution of fglBegin and the corresponding
execution of fglEnd, but an error may or may not be generated. If no error is generated, the operation is
undefined.

fglEdgeFlagPointer istypicaly implemented on the client side.

Edge flag array parameters are client-side state and are therefore not saved or restored by fglPushAttrib
and fglPopAttrib. UsefglPushClientAttrib and
fglPopClientAttrib instead.

ERRORS

GL_INVALID_ENUM isgenerated if stride is negative.

ASSOCIATED GETS

fgll sEnabled with argument GL_EDGE_FLAG_ARRAY
fglGet with argument GL_EDGE_FLAG_ARRAY_STRIDE
fglGetPointerv with argument GL_EDGE_FLAG_ARRAY_POINTER

SEE ALSO

Page 1

fglArrayElement, fglColorPointer, fglDrawArrays, fglDrawElements, fglEnable, fglGetPointerv,
fgllndexPointer, fglNor malPointer, fglPopClientAttrib,
fglPushClientAttrib, fglTexCoor dPointer, fglVertexPointer

July 22, 1997

FGLENABLE()

NAME

UNIX System V FGLENABLE()

fglEnable, fglDisable — enable or disable server-side GL capabilities

FORTRAN SPECIFICATION

SUBROUTINE fglEnable(INTEGER*4 cap)

PARAMETERS

cap Specifies asymbolic constant indicating a GL capability.

FORTRAN SPECIFICATION

SUBROUTINE fgIDisable(INTEGER*4 cap)

PARAMETERS

cap Specifies a symbolic constant indicating a GL capability.

DESCRIPTION

fglEnable and fglDisable enable and disable various capabilities. Use fgllsEnabled or fglGet to deter-
mine the current setting of any capability. The initial value for each capability with the exception of
GL_DITHER isGL_FALSE. Theinitial valuefor GL_DITHER isGL_TRUE.

Both fglEnable and fglDisable take a single argument, cap, which can assume one of the following values:

GL_ALPHA_TEST
GL_AUTO_NORMAL

GL_BLEND

GL_CLIP_PLANE;

GL_COLOR_LOGIC_OP

GL_COLOR_MATERIAL

GL_CULL_FACE

GL_DEPTH_TEST

GL_DITHER

GL_FOG
GL_INDEX_LOGIC_OP

GL_LIGHTI

GL_LIGHTING

Page 1

If enabled, do alphatesting. See fglAlphaFunc.

If enabled, generate normal vectors when either GL_MAP2_VERTEX_3
or GL_MAP2_VERTEX_4 isused to generate vertices. See fglM ap2.

If enabled, blend the incoming RGBA color values with the values in the
color buffers. See fglBlendFunc.

If enabled, clip geometry against user-defined clipping planei. See fglClip-
Plane.

If enabled, apply the currently selected logical operation to the incoming
RGBA color and color buffer values. See fglL ogicOp.

If enabled, have one or more material parameters track the current color.
See fglColor M aterial.

If enabled, cull polygons based on their winding in window coordinates. See
fglCullFace.

If enabled, do depth comparisons and update the depth buffer. Note that
even if the depth buffer exists and the depth mask is non-zero, the depth
buffer is not updated if the depth test is disabled. See fglDepthFunc and
fglDepthRange.

If enabled, dither color components or indices before they are written to the
color buffer.

If enabled, blend afog color into the posttexturing color. See fglFog.

If enabled, apply the currently selected logical operation to the incoming
index and color buffer indices. See
fglL ogicOp.

If enabled, include light i in the evaluation of the lighting equation. See
fglLightModel and fglLight.

If enabled, use the current lighting parameters to compute the vertex color
or index. Otherwise, simply associate the current color or index with each

July 22, 1997

FGLENABLE()

GL_LINE_SMOOTH

GL_LINE_STIPPLE

GL_MAP1 COLOR 4

GL_MAP1_INDEX

GL_MAP1_NORMAL

UNIX System V FGLENABLE()

vertex. See
fglMaterial, fglLightM odel, and fglL ight.

If enabled, draw lines with correct filtering. Otherwise, draw aliased lines.
SeefglLineWidth.

If enabled, use the current line stipple pattern when drawing lines. See
fglLineStipple.

If enabled, callsto fglEvalCoord1, fglEvalMeshl, and fglEvalPoint1 gen-
erate RGBA values. SeefglMapl.

If enabled, callsto fglEvalCoord1, fglEvalM eshl, and fglEvalPoint1 gen-
erate color indices. SeefgiMapl.

If enabled, callsto fglEvalCoord1, fglEvalM eshl, and fglEvalPoint1 gen-
erate normals. SeefgiMap1.

GL_MAP1_TEXTURE_COORD 1

If enabled, callsto fglEvalCoord1, fglEvalM eshl, and fglEvalPoint1 gen-
erate stexture coordinates. SeefgiMap1.

GL_MAP1_TEXTURE_COORD 2

If enabled, callsto fglEvalCoord1, fglEvalM eshl, and fglEvalPoint1 gen-
erate s and t texture coordinates. SeefglMapl.

GL_MAP1 TEXTURE_COORD 3

If enabled, callsto fglEvalCoord1, fglEvalMeshl, and fglEvalPoint1 gen-
erate s, t, and r texture coordinates. SeefgiMapl.

GL_MAP1 TEXTURE_COORD_4

GL_MAP1_VERTEX_3

GL_MAP1_VERTEX_4

GL_MAP2_COLOR_4

GL_MAP2_INDEX

GL_MAPZ2 NORMAL

If enabled, calls to fglEvalCoord1, fglEvalMesh1, and fglEvalPoint1 gen-
erate s, t, r, and q texture coordinates. SeefglMapl.

If enabled, callsto fglEvalCoord1, fglEvalM eshl, and fglEvalPoint1 gen-
erate x, y, and z vertex coordinates. SeefglMapl.

If enabled, callsto fglEvalCoord1, fglEvalM eshl, and fglEvalPoint1 gen-
erate homogeneous X, y, z, and w vertex coordinates. SeefglMapl.

If enabled, callsto fglEvalCoord2, fglEvalM esh2, and fglEval Point2 gen-
erate RGBA values. SeefglMap2.

If enabled, callsto fglEvalCoord2, fglEvalM esh2, and fglEval Point2 gen-
erate color indices. SeefglMap2.

If enabled, calls to fglEvalCoord2, fglEvalM esh2, and fglEvalPoint2 gen-
erate normals. SeefglMap2.

GL_MAP2_TEXTURE_COORD _1

If enabled, callsto fglEvalCoord2, fglEvalM esh2, and fglEval Point2 gen-
erate stexture coordinates. SeefgiMap2.

GL_MAP2_TEXTURE_COORD 2

If enabled, callsto fglEvalCoord2, fglEvalM esh2, and fglEvalPoint2 gen-
erate s and t texture coordinates. See fglMap2.

GL_MAP2_TEXTURE_COORD_3

If enabled, callsto fglEvalCoord2, fglEvalM esh2, and fglEval Point2 gen-
erate s, t, and r texture coordinates. See fglMap2.

GL_MAP2 TEXTURE_COORD 4

July 22, 1997

If enabled, calls to fglEvalCoord2, fglEvalMesh2, and fglEvalPoint2

Page 2

FGLENABLE()

Page 3

GL_MAP2_ VERTEX_3

GL_MAP2_VERTEX_4

GL_NORMALIZE

GL_POINT_SMOOTH

UNIX System V FGLENABLE()

generate s, t, r, and q texture coordinates. See fglM ap2.

If enabled, calls to fglEvalCoord2, fglEvalM esh2, and fglEvalPoint2 gen-
erate x, y, and z vertex coordinates. See fglMap2.

If enabled, callsto fglEvalCoord2, fglEvalM esh2, and fglEval Point2 gen-
erate homogeneous X, y, z, and w vertex coordinates. See fglMap2.

If enabled, normal vectors specified with fgINormal are scaled to unit
length after transformation. See fglNormal.

If enabled, draw points with proper filtering. Otherwise, draw aliased
points. SeefglPointSize.

GL_POLYGON_OFFSET_FILL

If enabled, and if the polygon is rendered in GL_FILL mode, an offset is
added to depth values of a polygon’s fragments before the depth com-
parison is performed. See fglPolygonOffset.

GL_POLYGON_OFFSET_LINE

If enabled, and if the polygon is rendered in GL_LINE mode, an offset is
added to depth values of a polygon’s fragments before the depth com-
parison is performed. See fglPolygonOffset.

GL_POLYGON_OFFSET_POINT

GL_POLYGON_SMOOTH

GL_POLYGON_STIPPLE

GL_SCISSOR_TEST

GL_STENCIL_TEST

GL_TEXTURE_1D

GL_TEXTURE_2D

GL_TEXTURE_GEN_Q

GL_TEXTURE_GEN_R

GL_TEXTURE_GEN_S

GL_TEXTURE_GEN_T

If enabled, an offset is added to depth values of a polygon’'s fragments
before the depth comparison is performed, if the polygon is rendered in
GL_POINT mode. See

fglPolygonOffset.

If enabled, draw polygons with proper filtering. Otherwise, draw aliased
polygons. For correct anti-aliased polygons, an apha buffer is needed and
the polygons must be sorted front to back.

If enabled, use the current polygon stipple pattern when rendering polygons.
See fglPolygonStipple.

If enabled, discard fragments that are outside the scissor rectangle. See
fgl Scissor.

If enabled, do stencil testing and update the stencil buffer. See fglStencil-
Func and fglStencilOp.

If enabled, one-dimensional texturing is performed (unless two-dimensional
texturing is also enabled). See fglTexl magelD.

If enabled, two-dimensional texturing is performed. See fgITexIlmage2D.

If enabled, the g texture coordinate is computed using the texture generation
function defined with fglTexGen. Otherwise, the current g texture coordi-
nateisused. SeefglTexGen.

If enabled, the r texture coordinate is computed using the texture generation
function defined with fglTexGen. Otherwise, the current r texture coordi-
nateisused. SeefglTexGen.

If enabled, the s texture coordinate is computed using the texture generation
function defined with fglTexGen. Otherwise, the current s texture coordi-
nate is used. See fglTexGen.

If enabled, the t texture coordinate is computed using the texture generation
function defined with fglTexGen. Otherwise, the current t texture coordi-
nate isused. SeefglTexGen.

July 22, 1997

FGLENABLE() UNIX System V FGLENABLE()

NOTES
GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE,
GL_POLYGON_OFFSET_POINT, GL_COLOR_LOGIC_OP, and GL_INDEX_LOGIC_OP are
only availableif the GL versionis 1.1 or greater.

ERRORS
GL_INVALID_ENUM isgenerated if cap is not one of the values listed previously.

GL_INVALID_OPERATION is generated if fglEnable or fgIDisable is executed between the execution
of fglBegin and the corresponding execution of fglEnd.

SEE ALSO
fglAlphaFunc, fglBlendFunc, fgIClipPlane, fglColorMaterial, fglCullFace,
fglDepthFunc, fglDepthRange, fglEnableClientState, fglFog, fglGet, fgll sEnabled, fglLight, fglLight-
Model, fglLineWidth, fglLineStipple, fglLogicOp, fglMapl, fglMap2, fglMaterial, fgINormal,
fglPointSize, fglPolygonM ode, fglPolygonOffset,
fglPolygonStipple, fglScissor, fglStencilFunc, fglStencilOp, fglTexGen, fglTexlmagelD,
fgl Texlmage2D

July 22, 1997 Page 4

FGLENABLECLIENTSTATE() UNIX System V FGLENABLECLIENTSTATE()

NAME
fglEnableClientState, fglDisableClientState — enable or disable client-side capability

FORTRAN SPECIFICATION
SUBROUTINE fglEnableClientState{ INTEGER*4 cap)

delim $$

PARAMETERS
cap Specifies the capability to enable. Symbolic constants GL_COLOR_ARRAY,
GL_EDGE_FLAG_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY,

GL_TEXTURE_COORD_ARRAY, and GL_VERTEX_ARRAY are accepted.

FORTRAN SPECIFICATION
SUBROUTINE fglDisableClientState(INTEGER*4 cap)

PARAMETERS
cap Specifies the capability to disable.

DESCRIPTION
fglEnableClientState and fglDisableClientState enable or disable individual client-side capabilities. By
default, al client-side capabilities are disabled. Both fglEnableClientState and fglDisableClientState
take a single argument, cap, which can assume one of the following values:

GL_COLOR_ARRAY If enabled, the color array is enabled for writing and used during rendering
when fglDrawArrays or fglDrawElement is called. See fglColor Pointer.

GL_EDGE_FLAG_ARRAY If enabled, the edge flag array is enabled for writing and used during render-
ing when fglDrawArrays or fglDrawElements is called. See fglEdgeFlag-
Pointer.

GL_INDEX_ARRAY If enabled, the index array is enabled for writing and used during rendering
when fglDrawArrays or fglDrawElementsis called. See fgllndexPointer.

GL_NORMAL_ARRAY If enabled, the normal array is enabled for writing and used during render-
ing when fglDrawArrays or fglDrawElements is called. See fgINormal-
Pointer.

GL_TEXTURE_COORD_ARRAY
If enabled, the texture coordinate array is enabled for writing and used for
rendering when fglDrawArrays or fglDrawElementsis called. See fglTex-
CoordPointer.

GL_VERTEX_ARRAY If enabled, the vertex array is enabled for writing and used during rendering
when fglDrawArrays or fglDrawElements is called. See fglVertex-
Pointer.

NOTES
fglEnableClientStateis available only if the GL versionis 1.1 or greater.

ERRORS
GL_INVALID_ENUM isgenerated if cap is not an accepted value.

fglEnableClientState is not allowed between the execution of fglBegin and the corresponding fglEnd, but
an error may or may not be generated. If no error is generated, the behavior is undefined.

SEE ALSO
fglArrayElement, fglColorPointer, fglDrawArrays, fglDrawElements, fglEdgeFlagPointer, fglEn-
able, fglGetPointerv, fgllndexPointer, fgll nterleavedArrays, fglNor malPointer, fgl TexCoor dPointer,
fglVertexPointer

Page 1 July 22, 1997

FGLEVALCOORD() UNIX System V FGLEVALCOORD ()

NAME

fglEvalCoord1d, fglEvalCoor d1f, fglEvalCoord2d, fglEval Coor d2f, fglEvalCoordldyv,
fglEvalCoord1fv, fglEvalCoord2dv, fglEvalCoord2fv — evaluate enabled one- and two-dimensional
maps

delim $$

FORTRAN SPECIFICATION

SUBROUTINE fglEvalCoord1d(REAL*8 u)
SUBROUTINE fglEvalCoord1f(REAL*4 u)
SUBROUTINE fglEvalCoord2d(REAL*8 u,
REAL*8V)
SUBROUTINE fglEvalCoor d2f(REAL*4 u,
REAL*4v)

PARAMETERS

u Specifies a value that is the domain coordinate u to the basis function defined in a previous fgiMapl
or fglMap2 command.

v Specifies a value that is the domain coordinate v to the basis function defined in a previous fglM ap2
command. Thisargument is not present in afglEvalCoord1 command.

FORTRAN SPECIFICATION

SUBROUTINE fglEval Coor d1dv(CHARACTER*8 u)
SUBROUTINE fglEvalCoor d1fv(CHARACTER*8 u)
SUBROUTINE fglEval Coor d2dv(CHARACTER*8 u)
SUBROUTINE fglEval Coor d2fv(CHARACTER*8 u)

PARAMETERS

u Specifies a pointer to an array containing either one or two domain coordinates. The first coordi-
nate is u. The second coordinate is v, which is present only in fglEvalCoord2 versions.

DESCRIPTION

Page 1

fglEvalCoord1 evaluates enabled one-dimensional maps at argument u. fglEvalCoord2 does the same for
two-dimensional maps using two domain values, u and v. To define amap, call fgiMapl and fglMap2; to
enable and disableit, call fglEnable and fglDisable.

When one of the fglEvalCoord commands isissued, al currently enabled maps of the indicated dimension
are evaluated. Then, for each enabled map, it isasif the corresponding GL command had been issued with
the computed value. That is, if GL_MAPL INDEX or GL_MAP2_INDEX is enabled, a fglindex com-
mand is simulated. If GL_MAP1 COLOR_4 or GL_MAP2 COLOR 4 is enabled, a fglColor com-
mand is simulated. If GL_MAP1 NORMAL or GL_MAP2 NORMAL is enabled, a normal vector is
produced, and if any of GL_MAPL TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1 TEXTURE_COORD_3, GL_MAP1 TEXTURE_COORD 4,
GL_MAP2_ TEXTURE_COORD 1, GL_MAP2_ TEXTURE_COORD_2,
GL_MAP2 TEXTURE_COORD_3, or GL_MAP2 TEXTURE_COORD_4 is enabled, then an
appropriate fgl TexCoord command is simulated.

For color, color index, normal, and texture coordinates the GL uses evaluated values instead of current
values for those evauations that are enabled, and current values otherwise, However, the evaluated values
do not update the current values. Thus, if fglVertex commands are interspersed with fglEvalCoord com-
mands, the color, normal, and texture coordinates associated with the fglVVertex commands are not affected
by the values generated by the fglEvalCoord commands, but only by the most recent fglColor, fgllindex,
fgINormal, and fglTexCoord commands.

July 22, 1997

FGLEVALCOORD() UNIX System V FGLEVALCOORD ()

No commands are issued for maps that are not enabled. 1f more than one texture evaluation is enabled for
a particular dimension (for example, GL_MAP2 TEXTURE_COORD 1 and
GL_MAP2 TEXTURE_COORD_2), then only the evaluation of the map that produces the larger
number of coordinates (in this case, GL_MAP2 TEXTURE_COORD_2) is carried out.
GL_MAP1 VERTEX_4 overrides GL_MAP1 VERTEX_3, and GL_MAP2_VERTEX_4 overrides
GL_MAP2 VERTEX_3, in the same manner. If neither a three- nor a four-component vertex map is
enabled for the specified dimension, the fglEvalCoord command is ignored.

If you have enabled automatic norma generation, by caling fglEnable with argument
GL_AUTO_NORMAL, fglEvalCoord2 generates surface normals analytically, regardless of the contents
or enabling of the GL_MAP2_NORMAL map. Let

Pp Pp
m=-X -
Pu Pv

Then the generated normal nis

Sn=mover“over { || m|}$

If automatic normal generation is disabled, the corresponding normal map GL_MAP2 NORMAL, if
enabled, is used to produce a normal. If neither automatic normal generation nor a normal map is enabled,
no normal is generated for fglEvalCoord2 commands.

ASSOCIATED GETS
fgll sEnabled with argument GL_MAP1 VERTEX 3
fgll sEnabled with argument GL_MAP1 VERTEX 4
fgll sEnabled with argument GL_MAP1_INDEX
fgll sEnabled with argument GL_MAP1 COLOR_4
fgll sEnabled with argument GL_MAP1 NORMAL
fgll sEnabled with argument GL_MAP1 TEXTURE_COORD_1
fgll sEnabled with argument GL_MAP1 TEXTURE_COORD_2
fgll sEnabled with argument GL_MAP1 TEXTURE_COORD_3
fgll sEnabled with argument GL_MAP1 TEXTURE_COORD 4
fgll sEnabled with argument GL_MAP2 VERTEX 3
fgll sEnabled with argument GL_MAP2 VERTEX 4
fgll sEnabled with argument GL_MAP2_INDEX
fgll sEnabled with argument GL_MAP2 COLOR_4
fgll sEnabled with argument GL_MAP2 NORMAL
fgll sEnabled with argument GL_MAP2 TEXTURE_COORD_1
fgll sEnabled with argument GL_ MAP2 TEXTURE_COORD 2
fgll sEnabled with argument GL_ MAP2 TEXTURE_COORD_3
fgll sEnabled with argument GL_MAP2 TEXTURE_COORD 4
fgll sEnabled with argument GL_AUTO_NORMAL
fglGetMap

SEE ALSO
fglBegin, fglColor, fglEnable, fglEvalMesh, fglEvalPoint, fgllndex, fglMapl, fglMap2, fgiMapGrid,
fgINormal, fglTexCoord, fglVertex

July 22, 1997 Page 2

FGLEVALMESH() UNIX System V FGLEVALMESH()

NAME
fglEvalM esh1, fglEvalM esh2 — compute a one- or two-dimensional grid of points or lines

FORTRAN SPECIFICATION
SUBROUTINE fglEvalM esh1(INTEGER*4 mode,
INTEGER*4 i1,
INTEGER*4i2)

delim $$

PARAMETERS
mode In fglEvalMeshl, specifies whether to compute a one-dimensional mesh of points or lines. Sym-
bolic constants GL_POINT and GL_L INE are accepted.

i1,i2 Specify thefirst and last integer values for grid domain variable i.

FORTRAN SPECIFICATION
SUBROUTINE fglEvalM esh2(INTEGER*4 mode,
INTEGER*4 i1,
INTEGER*4 2,
INTEGER*4 1,
INTEGER*42)

PARAMETERS
mode In fglEvalMesh2, specifies whether to compute a two-dimensiona mesh of points, lines, or
polygons. Symbolic constants GL_POINT, GL_LINE, and GL_FILL are accepted.

i1,i2 Specify thefirst and last integer values for grid domain variable i.
i1,j2 Specify thefirst and last integer values for grid domain variable j.

DESCRIPTION
fglMapGrid and fglEvalM esh are used in tandem to efficiently generate and evaluate a series of evenly-
spaced map domain values. fglEvalMesh steps through the integer domain of a one- or two-dimensional
grid, whose range is the domain of the evaluation maps specified by fgIMapl and fgiIMap2. mode deter-
mines whether the resulting vertices are connected as points, lines, or filled polygons.

In the one-dimensional case, fglEvalM esh1, the mesh is generated as if the following code fragment were
executed:

glBegin (type);
for(i=il;i<=i2;i+=1)

glEvalCoord1(i . DELTA u+ usub 1)
glEnd();

where

DELTAu=(u -u)/1
2 1

and n, u, and u are the arguments to the most recent

1 2
fglMapGridl command. type is GL_POINTS if mode is GL_POINT, or GL_LINES if mode is
GL_LINE.

The one absolute numeric requirement isthat if i = n, then the value computed from

Page 1 July 22, 1997

FGLEVALMESH() UNIX System V FGLEVALMESH()

i. DELTAu+u

isexactly u.
In the two-dimensional case, fglEvalMesh2, let

DELTAu=(u -u)/n
2 1

DELTAv=(v-v)/m,
21

wheren,u,u, m,v,andv

12 1 2
are the arguments to the most recent fgiMapGrid2 command. Then, if mode is GL_FILL, the fglEval-
Mesh2 command is equivalent to:

for (j=]1; j<j2Zj+=1){
glBegin (GL_QUAD_STRIP);
for(i=il;i<=i2;i+=1){
glEvaCoord2(i . DELTAu+u,j.DELTAV+V);

1 1
glEvaCoord2(i . DELTAu+u, (j+1) . DELTAV +V);
1 1

}
glEnd();
}

If modeisGL_LINE, then acall to fglEvalM esh2 is equivalent to:

for =j1 j<=j2j+=1){
glBegin(GL_LINE_STRIP);
for(i=il;i<=i2;i+=1)
glEvalCoord2(i . DELTAu+u,j.DELTAV+V);
1 1
glEnd();
}
for(i=il; i<=i2ji+=1){
glBegin(GL_LINE_STRIP);
for=jLj<=jLj+=1)
glEvalCoord2)(i . DELTAu+u,j.DELTAV+V);
1 1
glEnd();

}

And finally, if modeis GL_POINT, then acal to fglEvalM esh2 is equivaent to:

glBegin (GL_POINTS);
for (j=]1; j<=j2;j+=1){
for (i=il;i<=i2;i+=1){
glEvalCoord2(i . DELTAu+u,j.DELTAV+V);
1 1

July 22, 1997 Page 2

FGLEVALMESH() UNIX System V FGLEVALMESH()

}

}
glEnd();

In all three cases, the only absolute numeric requirements are that if $i™="n$, then the value computed from
i .DELTAu+uisexactly u,
1 2
and if $"="m$,
then the value computed from
j .DELTA VvV +visexactly v.
1 2

ERRORS
GL_INVALID_ENUM isgenerated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if fglEvalMesh is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MAPL_GRID_DOMAIN
fglGet with argument GL_MAP2_GRID_DOMAIN
fglGet with argument GL_MAPL_GRID_SEGMENTS
fglGet with argument GL_MAP2_GRID_SEGMENTS

SEE ALSO
fglBegin, fglEvalCoord, fglEvalPoint, fgiIMap1, fgiMap2, fgiMapGrid

Page 3 July 22, 1997

FGLEVALPOINT() UNIX System V FGLEVALPOINT()

NAME
fglEvalPoint1, fglEvalPoint2 — generate and evaluate a single point in amesh

FORTRAN SPECIFICATION
SUBROUTINE fglEvalPoint1(INTEGER*4 i)
SUBROUTINE fglEvalPoint2(INTEGER*4 i,
INTEGER*4])

delim $$

PARAMETERS
i Specifiestheinteger value for grid domain variable i.

j Specifiestheinteger value for grid domain variable j (fglEval Point2 only).

DESCRIPTION
fglMapGrid and fglEvalMesh are used in tandem to efficiently generate and evaluate a series of evenly
spaced map domain values. fglEvalPoint can be used to evaluate a single grid point in the same gridspace
that istraversed by fglEvalMesh. Calling fglEvalPoint1 isequivalent to caling

glEvalCoord1(i . DELTA u+u);
1
where

DELTAu=(u-u)/n
21

andn,u,andu
1 2

are the arguments to the most recent fgiIMapGrid1l command. The one absolute humeric requirement is
that if $i"="n$, then the value computed from

i .DELTAu+u isexactlyu.
1 2

In the two-dimensional case, fglEvalPoint2, let
DELTAu=(u -u)/n
2 1

DELTAv=(v -v)/m
2 1

wheren,u,u, m,v,andv
12 1 2

are the arguments to the most recent fgiMapGrid2 command. Then the fglEvalPoint2 command is
equivalent to calling

glEvaCoord2(i. DELTAu+u,j.DELTAV+V);
1 1

The only absolute numeric requirements are that if $i"="n$, then the value computed from

i .DELTAu+u isexactly u,

Page 1 July 22, 1997

FGLEVALPOINT () UNIX System V

1 2
and if $"="m$, then the value computed from

jcdot DELTA vV +V isexactly v.
1 2

ASSOCIATED GETS
fglGet with argument GL_MAPL_GRID_DOMAIN
fglGet with argument GL_MAP2_GRID_DOMAIN
fglGet with argument GL_MAP1_GRID_SEGMENTS
fglGet with argument GL_MAP2_GRID_SEGMENTS

SEE ALSO

fglEvalCoord, fglEvalM esh, fgiIMap1, fgiM ap2, fglM apGrid

July 22, 1997

FGLEVALPOINT()

Page 2

FGLFEEDBACKBUFFER() UNIX System V FGLFEEDBACKBUFFER()

NAME

fglFeedback Buffer — controls feedback mode

FORTRAN SPECIFICATION

SUBROUTINE fglFeedback Buffer (INTEGER* 4 size,
INTEGER* 4 type,
CHARACTER* 8 buffer)

delim $$

PARAMETERS

size Specifies the maximum number of values that can be written into buffer.

type Specifies a symbolic constant that describes the information that will be returned for each vertex.
GL_2D, GL_3D, GL_3D COLOR, GL_3D _COLOR_TEXTURE, and
GL_4D_COLOR_TEXTURE are accepted.

buffer Returns the feedback data.

DESCRIPTION

Page 1

The fglFeedbackBuffer function controls feedback. Feedback, like selection, isa GL mode. The modeis
selected by calling fglRender M ode with GL_FEEDBACK. When the GL isin feedback mode, no pixels
are produced by rasterization. Instead, information about primitives that would have been rasterized is fed
back to the application using the GL.

fglFeedbackBuffer has three arguments; buffer is a pointer to an array of floating-point values into which
feedback information is placed. size indicates the size of the array. type is a symbolic constant describing
the information that is fed back for each vertex. fglFeedbackBuffer must be issued before feedback mode
is enabled (by calling fglRenderMode with argument GL_FEEDBACK). Setting GL_FEEDBACK
without establishing the feedback buffer, or calling fglFeedbackBuffer while the GL is in feedback mode,
isan error.

When fglRender Mode is called while in feedback mode, it returns the number of entries placed in the
feedback array, and resets the feedback array pointer to the base of the feedback buffer. The returned value
never exceeds size. If the feedback data required more room than was available in buffer, fglRender M ode
returns a negative value. To take the GL out of feedback mode, call fglRender M ode with a parameter
value other than GL_FEEDBACK.

While in feedback mode, each primitive, bitmap, or pixel rectangle that would be rasterized generates a
block of values that are copied into the feedback array. If doing so would cause the number of entries to
exceed the maximum, the block is partially written so as to fill the array (if there is any room left at al),
and an overflow flag is set. Each block begins with a code indicating the primitive type, followed by values
that describe the primitive's vertices and associated data. Entries are also written for bitmaps and pixel
rectangles. Feedback occurs after polygon culling and fglPolygonM ode interpretation of polygons has
taken place, so polygons that are culled are not returned in the feedback buffer. It can also occur after
polygons with more than three edges are broken up into triangles, if the GL implementation renders
polygons by performing this decomposition.

The fglPassThrough command can be used to insert a marker into the feedback buffer. See
fglPassT hrough.

Following is the grammar for the blocks of values written into the feedback buffer. Each primitive is indi-
cated with a unique identifying value followed by some number of vertices. Polygon entries include an
integer value indicating how many vertices follow. A vertex isfed back as some number of floating-point
values, as determined by type. Colors are fed back as four values in RGBA mode and one value in color
index mode.

feedbackList — feedbackltem feedbackList | feedbackltem

July 22, 1997

FGLFEEDBACKBUFFER() UNIX System V FGLFEEDBACKBUFFER()

feedbackitem — point | [ineSegment | polygon | bitmap | pixel Rectangle | passThru

point — GL_POINT_TOKEN vertex

lineSegment — GL_LINE_TOKEN vertex vertex | GL_LINE_RESET_TOKEN vertex vertex
polygon — GL_POLYGON_TOKEN n polySpec

polySpec — polySpec vertex | vertex vertex vertex

bitmap —~ GL_BITMAP_TOKEN vertex

pixelRectangle — GL_DRAW_PIXEL_TOKEN vertex | GL_COPY_PIXEL_TOKEN vertex
passThru « GL_PASS THROUGH_TOKEN value

vertex — 2d|3d | 3dColor | 3dColorTexture | 4dColorTexture

2d — valuevalue

3d < vauevaluevaue

3dColor ~ value vaue value color

3dColorTexture — value value value color tex

4dColorTexture — vaue value value value color tex

color rgba|index

rgha — value value value value

index — value

tex — value value value value

value is a floating-point number, and n is a floating-point integer giving the number of verticesin the
polygon. GL_POINT_TOKEN, GL_LINE_TOKEN, GL_LINE_RESET_TOKEN,
GL_POLYGON_TOKEN, GL_BITMAP_TOKEN, GL_DRAW_PIXEL_TOKEN,
GL_COPY_PIXEL_TOKEN and GL_PASS THROUGH_TOKEN are symbolic floating-point con-
stants. GL_LINE_RESET_TOKEN isreturned whenever the line stipple pattern isreset. The data
returned as a vertex depends on the feedback type.

The following table gives the correspondence between type and the number of values per vertex. kislin
color index mode and 4 in RGBA mode.

July 22, 1997 Page 2

FGLFEEDBACKBUFFER() UNIX System V FGLFEEDBACKBUFFER()
type coordinates | color | texture | total number of values
GL_2D X, Y 2
GL_3D XY, 2 3
GL_3D_COLOR XY, Z k $3 +k$
GL_3D_COLOR_TEXTURE XY, Z k 4 $7 +k$
GL_4D_COLOR_TEXTURE XY, Z, W k 4 $8 +k$

NOTES

Feedback vertex coordinates are in window coordinates, except w, which isin clip coordinates. Feedback
colors are lighted, if lighting is enabled. Feedback texture coordinates are generated, if texture coordinate
generation isenabled. They are always transformed by the texture matrix.

fglFeedback Buffer, when used in a display list, is not compiled into the display list but is executed

immediately.

ERRORS
GL_INVALID_ENUM isgenerated if type is not an accepted value.

Page 3

GL_INVALID_VALUE isgenerated if sizeis negative.

GL_INVALID_OPERATION isgenerated if fglFeedbackBuffer iscalled while the render mode is
GL_FEEDBACK, or if fglRender M odeis called with argument GL_FEEDBACK before fglFeedback-

Buffer iscalled at least once.

GL_INVALID_OPERATION isgenerated if fglFeedbackBuffer is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_RENDER_MODE

SEE ALSO
fglBegin, fglLineStipple, fglPassThrough, fglPolygonM ode, fglRender M ode, fgl SelectBuffer

July 22, 1997

FGLFINISH() UNIX System V FGLFINISH()

NAME
fglFinish — block until all GL execution is complete

FORTRAN SPECIFICATION
SUBROUTINE fglFinish()

DESCRIPTION
fglFinish does not return until the effects of al previously called GL commands are complete. Such
effects include al changes to GL state, all changes to connection state, and all changes to the frame buffer
contents.

NOTES
fglFinish requires around trip to the server.

ERRORS
GL_INVALID_OPERATION is generated if fglFinish is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

SEE ALSO
fglFlush

Page 1 July 22, 1997

FGLFLUSH() UNIX System V FGLFLUSH()

NAME
fglFlush — force execution of GL commands in finite time

FORTRAN SPECIFICATION
SUBROUTINE fglFlush()

DESCRIPTION
Different GL implementations buffer commands in severa different locations, including network buffers
and the graphics accelerator itself. fglFlush empties all of these buffers, causing all issued commands to
be executed as quickly as they are accepted by the actual rendering engine. Though this execution may not
be completed in any particular time period, it does complete in finite time.

Because any GL program might be executed over a network, or on an accelerator that buffers commands,
al programs should call fglFlush whenever they count on having al of their previously issued commands
completed. For example, call fglFlush before waiting for user input that depends on the generated image.

NOTES
fglFlush can return at any time. It does not wait until the execution of all previously issued GL commands
iscomplete.

ERRORS
GL_INVALID_OPERATION isgenerated if fglFlush is executed between the execution of fglBegin and
the corresponding execution of fglEnd.

SEE ALSO
fglFinish

Page 1 July 22, 1997

FGLFOG() UNIX System V FGLFOG()

NAME
folFogf, fglFogi, fglFogfv, fglFogiv — specify fog parameters

FORTRAN SPECIFICATION
SUBROUTINE fglFogf(INTEGER* 4 pname,

REAL*4 param)
SUBROUTINE fglFogi(INTEGER*4 pname,
INTEGER*4 param)
delim $$
PARAMETERS

pname Specifies a singlevalued fog parameter. GL _FOG MODE, GL_FOG DENSITY,
GL_FOG_START, GL_FOG_END, and GL_FOG_INDEX are accepted.

param Specifies the value that pname will be set to.

FORTRAN SPECIFICATION
SUBROUTINE fglFogfv(INTEGER* 4 pname,
CHARACTER*8 params)
SUBROUTINE fglFogiv(INTEGER*4 pname,
CHARACTER*8 params)

PARAMETERS
pname Specifies a fog parameter. GL_FOG_MODE, GL_FOG_DENSITY, GL_FOG_START,
GL_FOG_END, GL_FOG_INDEX, and GL_FOG_COL OR are accepted.

params Specifies the value or values to be assigned to pname. GL_FOG_COLOR requires an array of
four values. All other parameters accept an array containing only asingle value.

DESCRIPTION
Fogisinitially disabled. While enabled, fog affects rasterized geometry, bitmaps, and pixel blocks, but not
buffer clear operations. To enable and disable fog, call fglEnable and fglDisable with argument GL_FOG.

fglFog assigns the value or values in params to the fog parameter specified by pname. The following
values are accepted for pname;

GL_FOG_MODE params is a single integer or floating-point value that specifies the equation to be
used to compute the fog blend factor, f. Three symbolic constants are accepted:
GL_LINEAR, GL_EXP, and GL_EXP2. The equations corresponding to these
symbolic constants are defined below. The initial fog modeis GL_EXP.

GL_FOG_DENSITY paramsisasingle integer or floating-point value that specifies $density$, the fog
density used in both exponential fog equations. Only nonnegative densities are
accepted. Theinitial fog density is 1.

GL_FOG_START params is a single integer or floating-point value that specifies $start$, the near
distance used in the linear fog equation. The initial near distanceisO.

GL_FOG_END params is a single integer or floating-point value that specifies end, the far dis-
tance used in the linear fog equation. The initial far distanceis 1.

GL_FOG_INDEX params is a single integer or floating-point value that specifies $i sub f$, the fog
color index. Theinitial fogindex isO.

GL_FOG_COLOR params contains four integer or floating-point values that specify $C sub f$, the
fog color. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable value maps
to —1.0. Foating-point values are mapped directly. After conversion, all color

Page 1 July 22, 1997

FGLFOG() UNIX System V FGLFOG()

components are clamped to the range [0,1]. Theinitial fog color is (0, O, O, 0).

Fog blends a fog color with each rasterized pixel fragment’s posttexturing color using a blending factor
f. Factor f is computed in one of three ways, depending on the fog mode. Let z be the distance in
eye coordinates from the origin to the fragment being fogged. The equation for GL_LINEAR fogis

f"="{end"-" z} over {end -~ start}
The equation for GL_EXP fogis
f"="e** (-(density “cdot™ z))
The equation for GL_EXP2fogis
f"="e** (-(density “cdot™ z) ** 2)

Regardless of the fog mode, f is clamped to the range [0,1] after it is computed. Then, if the GL isin
RGBA color mode, the fragment’s color $C sub r$ is replaced by

{Csubr} prime™="fCsubr+ (1-f) Csubf
In color index mode, the fragment’s color index $i sub r$ is replaced by

{isubr} prime™="isubr+ (1-f)isubf

ERRORS
GL_INVALID_ENUM is generated if pname is not an accepted value, or if pnameis GL_FOG_MODE
and params is not an accepted value.

GL_INVALID_VALUE isgenerated if pnameisGL_FOG_DENSITY, and paramsis negative.

GL_INVALID_OPERATION is generated if fglFog is executed between the execution of fglBegin and
the corresponding execution of fglEnd.

ASSOCIATED GETS
fgll sEnabled with argument GL_FOG
fglGet with argument GL_FOG_COLOR
fglGet with argument GL_FOG_INDEX
fglGet with argument GL_FOG_DENSITY
fglGet with argument GL_FOG_START
fglGet with argument GL_FOG_END
fglGet with argument GL_FOG_MODE

SEE ALSO
fglEnable

July 22, 1997 Page 2

FGLFRONTFACE() UNIX System V FGLFRONTFACE()

NAME

fglFrontFace — define front- and back-facing polygons

FORTRAN SPECIFICATION

SUBROUTINE fglFrontFace(INTEGER*4 mode)

delim $$

PARAMETERS

mode Specifies the orientation of front-facing polygons. GL_CW and GL_CCW are accepted. The ini-
tial valueisGL_CCW.

DESCRIPTION

In a scene composed entirely of opaque closed surfaces, back-facing polygons are never visible. Eliminat-
ing these invisible polygons has the obvious benefit of speeding up the rendering of the image. To enable
and disable elimination of back-facing polygons, call fglEnable and fglDisable with argument
GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if an imaginary
object following the path from its first vertex, its second vertex, and so on, to its last vertex, and finally
back to its first vertex, moves in a clockwise direction about the interior of the polygon. The polygon’s
winding is said to be counterclockwise if the imaginary object following the same path moves in a counter-
clockwise direction about the interior of the polygon. fglFrontFace specifies whether polygons with
clockwise winding in window coordinates, or counterclockwise winding in window coordinates, are taken
to be front-facing. Passing GL_CCW to mode sdlects counterclockwise polygons as front-facing;
GL_CW sdlects clockwise polygons as front-facing. By default, counterclockwise polygons are taken to
be front-facing.

ERRORS

GL_INVALID_ENUM isgenerated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if fglFrontFace is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGet with argument GL_FRONT_FACE

SEE ALSO

Page 1

fglCullFace, fglLightM odel

July 22, 1997

FGLFRUSTUM () UNIX System V FGLFRUSTUM ()

NAME
fglFrustum — multiply the current matrix by a perspective matrix

FORTRAN SPECIFICATION
SUBROUTINE fglFrustum(REAL*8 left,

REAL*8right,
REAL*8 bottom,
REAL*8 top,
REAL*8 zNear,
REAL*8 zFar)
delim $$
PARAMETERS
left, right
Specify the coordinates for the left and right vertical clipping planes.
bottom, top
Specify the coordinates for the bottom and top horizontal clipping planes.
ZNear, zFar
Specify the distances to the near and far depth clipping planes. Both distances must be positive.
DESCRIPTION

fglFrustum describes a perspective matrix that produces a perspective projection. The current matrix (see
fglMatrixM ode) is multiplied by this matrix and the result replaces the current matrix, as if fgiIMultMa-
trix were called with the following matrix as its argument:

down 130 {left (™ matrix {
ccol { {{2" "zNear"} over {"right" - "left"}} above 0 above 0 above 0}
ccol { 0 above{{2~ "zNear"} over {"top" - "bottom"}} ~ above 0 above 0}
ccol { A7 above B ™ above C™ above-1"""}
ccol { 0 above 0 above D above 0} } " right)}

down 130
{A"="{"right" + "left"} over {"right" - "left"}}

down 130
{B"="{"top" + "bottom"} over {"top" - "bottom"}}

down 130
{C™="-{{"zFar" +"zNear"} over {"zFar" - "zNear"}}}

down 130
{D"="-{{27 "zFar" " "zNear"} over {"zFar" - "zNear"}}}

Typicaly, the matrix mode is GL_PROJECTION, and (left, bottom, —zNear) and (right, top, —zNear)
specify the points on the near clipping plane that are mapped to the lower left and upper right corners of the
window, assuming that the eye islocated at (0, 0, 0). —zFar specifies the location of the far clipping plane.
Both zZNear and zFar must be positive.

Use fglPushMatrix and fglPopM atrix to save and restore the current matrix stack.

NOTES
Depth buffer precision is affected by the values specified for zZNear and zFar. The greater the ratio of zFar
to zNear is, the less effective the depth buffer will be at distinguishing between surfaces that are near each

Page 1 July 22, 1997

FGLFRUSTUM () UNIX System V FGLFRUSTUM ()

other. If
$r"=""zFar" over "zNear"$

roughly $log sub 2 (r)$ bits of depth buffer precision are lost. Because r approaches infinity as zNear
approaches 0, zZNear must never be set to 0.

ERRORS
GL_INVALID_VALUE isgenerated if ZNear or zFar is not positive.

GL_INVALID_OPERATION is generated if fglFrustum is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE
fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX

SEE ALSO
fglOrtho, fglMatrixM ode, fgIM ultM atrix, fglPushMatrix, fglViewport

July 22, 1997 Page 2

FGLGENLISTS() UNIX System V FGLGENLISTS()

NAME
fglGenL ists — generate a contiguous set of empty display lists

FORTRAN SPECIFICATION
INTEGER* 4 fglGenL ists(INTEGER*4 range)

PARAMETERS
range Specifies the number of contiguous empty display liststo be generated.

DESCRIPTION
fglGenL ists has one argument, range. It returns an integer n such that range contiguous empty display
lists, named n, n+1, ..., ntrange -1, are created. If range is O, if there is no group of range contiguous
names available, or if any error is generated, no display lists are generated, and 0 is returned.

ERRORS
GL_INVALID_VALUE isgenerated if range is negative.

GL_INVALID_OPERATION is generated if fglGenLists is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
follsList

SEE ALSO
fglCallList, fglCallLists, fglDeletel ists, fglNewL ist

Page 1 July 22, 1997

FGLGENTEXTURES() UNIX System V FGLGENTEXTURES()

NAME
fglGenTextur es — generate texture names

FORTRAN SPECIFICATION
SUBROUTINE fglGenTextures(INTEGER*4 n,
CHARACTER* 8 textures)

PARAMETERS
n Specifies the number of texture names to be generated.

textures Specifies an array in which the generated texture names are stored.

DESCRIPTION
fglGenTextures returns n texture names in textures. There is no guarantee that the names form a contigu-
ous set of integers; however, it is guaranteed that none of the returned names was in use immediately
before the call to fglGenT extures.

The generated textures have no dimensionality; they assume the dimensionality of the texture target to
which they are first bound (see fglBindTextur€).

Texture names returned by a call to fglGenTextures are not returned by subsequent calls, unless they are
first deleted with fglDeleteT extures.

NOTES
fglGenTexturesisavailable only if the GL versionis 1.1 or greater.

ERRORS
GL_INVALID_VALUE isgenerated if nisnegative.

GL_INVALID_OPERATION is generated if fglGenTextures is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
follsTexture

SEE ALSO
fglBindTexture, fglCopyTexlmagelD, fglCopyTexImage2D, fglDeeteTextures, fglGet, fglGetTex-
Parameter, fglTexImagelD, fgl T exlmage2D, fgl T exParameter

Page 1 July 22, 1997

FGLGET() UNIX System V FGLGET()

NAME

fglGetBooleanv, fglGetDoublev, fglGetFloatv, fglGetlntegerv — return the value or values of a selected
parameter

FORTRAN SPECIFICATION

SUBROUTINE fglGetBooleanv(INTEGER* 4 pname,
CHARACTER*8 params)

FORTRAN SPECIFICATION

SUBROUTINE fglGetDoublev(INTEGER* 4 pname,
CHARACTER*8 params)

FORTRAN SPECIFICATION

SUBROUTINE fglGetFloatv(INTEGER*4 pname,
CHARACTER*8 params)

FORTRAN SPECIFICATION

SUBROUTINE fglGetlntegerv(INTEGER*4 pname,
CHARACTER*8 params)

delim $$

PARAMETERS

pname Specifies the parameter value to be returned. The symbolic constants in the list below are
accepted.

params Returns the value or values of the specified parameter.

DESCRIPTION

Page 1

These four commands return values for simple state variables in GL. pname is a symbolic constant indicat-
ing the state variable to be returned, and params is a pointer to an array of the indicated type in which to
place the returned data.

Type conversion is performed if params has a different type than the state variable value being requested.
If fglGetBooleanv is called, afloating-point (or integer) value is converted to GL_FAL SE if and only if it
is 0.0 (or 0). Otherwise, it is converted to GL_TRUE. If fglGetintegerv is called, boolean values are
returned as GL_TRUE or GL_FAL SE, and most floating-point values are rounded to the nearest integer
value. Floating-point colors and normals, however, are returned with a linear mapping that maps 1.0 to the
most positive representable integer value, and —1.0 to the most negative representable integer value. If
foglGetFloatv or fglGetDoublev is called, boolean values are returned as GL_TRUE or GL_FAL SE, and
integer values are converted to floating-point values.

The following symbolic constants are accepted by pname:

GL_ACCUM_ALPHA_BITS
params returns one value, the number of apha bitplanes in the accumula-
tion buffer.

GL_ACCUM _BLUE_BITS params returns one value, the number of blue bitplanes in the accumulation
buffer.

GL_ACCUM_CLEAR_VALUE
params returns four values: the red, green, blue, and alpha values used to
clear the accumulation buffer. Integer values, if requested, are linearly
mapped from the internal floating-point representation such that 1.0 returns
the most positive representable integer value, and —1.0 returns the most

July 22, 1997

FGLGET()

UNIX System V FGLGET()

negative representable integer value. The initia value is (0, O, 0, 0). See
fglClear Accum.

GL_ACCUM_GREEN_BITS

GL_ACCUM_RED BITS

GL_ALPHA_BIAS

GL_ALPHA BITS

GL_ALPHA_SCALE

GL_ALPHA_TEST

GL_ALPHA_TEST_FUNC

GL_ALPHA_TEST_REF

params returns one value, the number of green bitplanes in the accumula-
tion buffer.

params returns one value, the number of red bitplanes in the accumulation
buffer.

params returns one value, the alpha bias factor used during pixel transfers.
Theinitial valueis0. SeefglPixelTransfer.

params returns one value, the number of apha bitplanes in each color
buffer.

params returns one value, the alpha scale factor used during pixel transfers.
Theinitial valueis1. SeefglPixelTransfer.

params returns a single boolean value indicating whether alpha testing of
fragmentsis enabled. The initial valueis GL_FAL SE. See fglAlphaFunc.

params returns one value, the symbolic name of the alpha test function. The
initial valueisGL_ALWAYS. See fglAlphaFunc.

params returns one value, the reference value for the alpha test. The initial
value is 0. See fglAlphaFunc. An integer value, if requested, is linearly
mapped from the internal floating-point representation such that 1.0 returns
the most positive representable integer value, and —1.0 returns the most
negative representable integer value.

GL_ATTRIB_STACK_DEPTH

GL_AUTO_NORMAL

GL_AUX_BUFFERS

GL_BLEND

GL_BLEND_COLOR_EXT

GL_BLEND_DST

params returns one value, the depth of the attribute stack. If the stack is
empty, O isreturned. Theinitial value is 0. See fglPushAttrib.

params returns a single boolean value indicating whether 2D map evalua-
tion automatically generates surface normals. The initiad value is
GL_FALSE. SeefglMap2.

params returns one value, the number of auxiliary color buffers. The initial
valueisO.

params returns a single boolean value indicating whether blending is
enabled. Theinitial valueisGL_FAL SE. See fgIBlendFunc.

params returns four values, the red, green, blue, and apha values which are
the components of the blend color. See fglBlendColorEXT.

params returns one value, the symbolic constant identifying the destination
blend function. Theinitial valueis GL_ZERO. See fglBlendFunc.

GL_BLEND_EQUATION_EXT

GL_BLEND_SRC

GL_BLUE_BIAS

July 22, 1997

params returns one value, a symbolic constant indicating whether the blend
equation is GL_FUNC_ADD_EXT, GL_MIN_EXT or GL_MAX_EXT.
See fglBlendEquationEXT.

params returns one value, the symbolic constant identifying the source
blend function. The initial valueis GL_ONE. See fgIBlendFunc.

params returns one value, the blue bias factor used during pixel transfers.
Theinitial valueis0. SeefglPixelTransfer.

Page 2

FGLGET()

Page 3

GL_BLUE_BITS
GL_BLUE_SCALE

UNIX System V FGLGET()

params returns one value, the number of blue bitplanesin each color buffer.

params returns one value, the blue scale factor used during pixel transfers.
Theinitial valueis 1. SeefglPixelTransfer.

GL_CLIENT_ATTRIB_STACK_DEPTH

GL_CLIP_PLANE;

GL_COLOR_ARRAY

params returns one value indicating the depth of the attribute stack. The ini-
tial valueis 0. SeefglPushClientAttrib.

params returns a single boolean value indicating whether the specified clip-
ping plane isenabled. Theinitial valueisGL_FAL SE. SeefglClipPlane.

params returns a single boolean value indicating whether the color array is
enabled. Theinitial valueis GL_FAL SE. See fglColor Pointer.

GL_COLOR_ARRAY_SIZE

params returns one value, the number of components per color in the color
array. Theinitial value is 4. See fglColor Pointer.

GL_COLOR_ARRAY_STRIDE

params returns one value, the byte offset between consecutive colors in the
color array. Theinitia valueis 0. See fglColor Pointer.

GL_COLOR_ARRAY_TYPE

params returns one value, the data type of each component in the color
array. Theinitial valueisGL_FL OAT. SeefglColor Pointer.

GL_COLOR_CLEAR_VALUE

GL_COLOR_LOGIC_OP

GL_COLOR_MATERIAL

params returns four values: the red, green, blue, and alpha values used to
clear the color buffers. Integer values, if requested, are linearly mapped
from the internal floating-point representation such that 1.0 returns the most
positive representable integer value, and —1.0 returns the most negative
representable integer value. The initia value is (0, 0, 0, 0). See fglClear-
Color.

params returns a single boolean value indicating whether a fragment’s
RGBA color values are merged into the framebuffer using a logical opera-
tion. Theinitial valueisGL_FAL SE. SeefglL ogicOp.

params returns a single boolean value indicating whether one or more
material parameters are tracking the current color. The initial value is
GL_FALSE. SeefglColor M aterial.

GL_COLOR_MATERIAL_FACE

params returns one value, a symbolic constant indicating which materials
have a parameter that is tracking the current color. The initial vaue is
GL_FRONT_AND_BACK. SeefglColorMaterial.

GL_COLOR_MATERIAL_PARAMETER

GL_COLOR_WRITEMASK

GL_CULL_FACE

params returns one value, a symbolic constant indicating which material
parameters are tracking the current color. The initia vaue is
GL_AMBIENT_AND_DIFFUSE. SeefglColorMaterial.

params returns four boolean values: the red, green, blue, and alpha write
enables for the color buffers. The initial value is (GL_TRUE, GL_TRUE,
GL_TRUE, GL_TRUE). SeefglColor M ask.

params returns a single boolean value indicating whether polygon culling is
enabled. Theinitial valueis GL_FAL SE. See fglCullFace.

July 22, 1997

FGLGET() UNIX System V FGLGET()

GL_CULL_FACE_MODE params returns one value, a symbolic constant indicating which polygon
faces are to be culled. Theinitial valueis GL_BACK. See fglCullFace.

GL_CURRENT_COLOR params returns four values: the red, green, blue, and apha values of the
current color. Integer values, if requested, are linearly mapped from the
internal floating-point representation such that 1.0 returns the most positive
representable integer value, and —1.0 returns the most negative represent-
able integer value. SeefglColor. Theinitia valueis(1, 1, 1, 1).

GL_CURRENT_INDEX params returns one value, the current color index. The initia valueis 1. See
fgllndex.

GL_CURRENT_NORMAL params returns three values: the x, y, and z values of the current normal.
Integer values, if requested, are linearly mapped from the internal floating-
point representation such that 1.0 returns the most positive representable
integer value, and —1.0 returns the most negative representable integer
value. Theinitial valueis(0, 0, 1). SeefgINormal.

GL_CURRENT_RASTER_COLOR
params returns four values: the red, green, blue, and apha values of the
current raster position. Integer values, if requested, are linearly mapped
from the internal floating-point representation such that 1.0 returns the most
positive representable integer value, and —1.0 returns the most negative
representable integer value. The initial valueis (1, 1, 1, 1). See fglRaster-
Pos.

GL_CURRENT_RASTER_DISTANCE
params returns one value, the distance from the eye to the current raster
position. Theinitial valueis 0. SeefglRasterPos.

GL_CURRENT_RASTER_INDEX
params returns one value, the color index of the current raster position. The
initial value is 1. See fglRaster Pos.

GL_CURRENT_RASTER_POSITION
params returns four values: the x, y, z, and w components of the current ras-
ter position. X, y, and z are in window coordinates, and w isin clip coordi-
nates. Theinitia valueis (0, 0, 0, 1). See fglRaster Pos.

GL_CURRENT_RASTER_POSITION_VALID
params returns a single boolean value indicating whether the current raster
positionisvalid. Theinitial valueisGL_TRUE. SeefglRaster Pos.

GL_CURRENT_RASTER_TEXTURE_COORDS
params returns four values: the s, t, r, and g current raster texture coordi-
nates. Theinitia valueis (0, 0, 0, 1). SeefglRaster Pos and fglTexCoord.

GL_CURRENT_TEXTURE_COORDS
params returns four values: the s, t, r, and q current texture coordinates.
Theinitial valueis(0, 0, 0, 1). SeefglTexCoord.

GL_DEPTH_BIAS params returns one value, the depth bias factor used during pixel transfers.
Theinitial valueis0. SeefglPixelTransfer.
GL_DEPTH_BITS params returns one value, the number of bitplanes in the depth buffer.

GL_DEPTH_CLEAR_VALUE
params returns one value, the value that is used to clear the depth buffer.
Integer values, if requested, are linearly mapped from the internal floating-
point representation such that 1.0 returns the most positive representable

July 22, 1997 Page 4

FGLGET()

Page 5

GL_DEPTH_FUNC

GL_DEPTH_RANGE

GL_DEPTH_SCALE

GL_DEPTH_TEST

GL_DEPTH_WRITEMASK

GL_DITHER

GL_DOUBLEBUFFER

GL_DRAW_BUFFER

GL_EDGE_FLAG

UNIX System V FGLGET()

integer value, and —1.0 returns the most negative representable integer
value. Theinitial valueis 1. See fglClear Depth.

params returns one value, the symbolic constant that indicates the depth
comparison function. Theinitial valueis GL_L ESS. See fglDepthFunc.

params returns two values. the near and far mapping limits for the depth
buffer. Integer values, if requested, are linearly mapped from the internal
floating-point representation such that 1.0 returns the most positive
representable integer value, and —1.0 returns the most negative represent-
ableinteger value. Theinitial valueis (0, 1). SeefglDepthRange.

params returns one value, the depth scale factor used during pixel transfers.
Theinitial valueis 1. SeefglPixelTransfer.

params returns a single boolean value indicating whether depth testing of
fragments is enabled. The initial value is GL_FAL SE. See fglDepthFunc
and fglDepthRange.

params returns a single boolean value indicating if the depth buffer is
enabled for writing. Theinitial valueis GL_TRUE. See fglDepthM ask.

params returns a single boolean value indicating whether dithering of frag-
ment colors and indicesis enabled. Theinitial valueisGL_TRUE.

params returns a single boolean value indicating whether double buffering
is supported.

params returns one value, a symbolic constant indicating which buffers are
being drawn to. See fglDrawBuffer. Theinitial valueisGL_BACK if there
are back buffers, otherwiseitisGL_FRONT.

params returns a single boolean value indicating whether the current edge
flag is GL_TRUE or GL_FALSE. The initial value is GL_TRUE. See
foglEdgeFlag.

GL_EDGE_FLAG_ARRAY params returns a single boolean value indicating whether the edge flag array

isenabled. Theinitial valueis GL_FAL SE. See fglEdgeFlagPointer.

GL_EDGE_FLAG_ARRAY_STRIDE

GL_FOG

GL_FOG_COLOR

GL_FOG_DENSITY

GL_FOG_END

GL_FOG_HINT

params returns one value, the byte offset between consecutive edge flagsin
the edge flag array. The initial valueis 0. See fglEdgeFlagPointer.

params returns a single boolean value indicating whether fogging is
enabled. Theinitial valueisGL_FAL SE. See fglFog.

params returns four values. the red, green, blue, and apha components of
the fog color. Integer values, if requested, are linearly mapped from the
internal floating-point representation such that 1.0 returns the most positive
representable integer value, and —1.0 returns the most negative represent-
ableinteger value. Theinitia valueis (0, 0, 0, 0). See fglFog.

params returns one value, the fog density parameter. The initial value is 1.
See fglFog.

params returns one value, the end factor for the linear fog equation. The ini-
tial valueis 1. See fglFog.

params returns one value, a symbolic constant indicating the mode of the
fog hint. Theinitial valueis GL_DONT_CARE. SeefglHint.

July 22, 1997

FGLGET()

GL_FOG_INDEX

GL_FOG_MODE

GL_FOG_START

GL_FRONT_FACE

GL_GREEN_BIAS

GL_GREEN_BITS

GL_GREEN_SCALE

GL_INDEX_ARRAY

UNIX System V FGLGET()

params returns one value, the fog color index. The initial value is 0. See
fglFog.

params returns one value, a symbolic constant indicating which fog equa-
tionisselected. Theinitial vaueis GL_EXP. See fglFog.

params returns one value, the start factor for the linear fog equation. The
initial value is 0. See fglFog.

params returns one value, a symbolic constant indicating whether clockwise
or counterclockwise polygon winding is treated as front-facing. The initial
valueisGL_CCW. SeefglFrontFace.

params returns one value, the green bias factor used during pixel transfers.
Theinitial valueisO.

params returns one value, the number of green bitplanes in each color
buffer.

params returns one value, the green scale factor used during pixdl transfers.
Theinitial valueis1. SeefglPixelTransfer.

params returns a single boolean value indicating whether the color index
array isenabled. Theinitial valueis GL_FAL SE. See fgllndexPointer.

GL_INDEX_ARRAY_STRIDE

GL_INDEX_ARRAY_TYPE

GL_INDEX_BITS

params returns one value, the byte offset between consecutive color indexes
in the color index array. Theinitial valueis 0. See fgll ndexPointer.

params returns one value, the data type of indexes in the color index array.
Theinitial valueisGL_FLOAT. See fgll ndexPointer.

params returns one value, the number of bitplanes in each color index
buffer.

GL_INDEX_CLEAR_VALUE

GL_INDEX_LOGIC_OP

GL_INDEX_MODE

GL_INDEX_OFFSET

GL_INDEX_SHIFT

GL_INDEX_WRITEMASK

GL_LIGHTI

GL_LIGHTING

July 22, 1997

params returns one value, the color index used to clear the color index
buffers. Theinitial value is 0. See fglClear Index.

params returns a single boolean value indicating whether a fragment's
index values are merged into the framebuffer using a logical operation. The
initial valueisGL_FAL SE. SeefglL ogicOp.

params returns a single boolean value indicating whether the GL isin color
index mode (GL_TRUE) or RGBA mode (GL_FAL SE).

params returns one value, the offset added to color and stencil indices dur-
ing pixel transfers. Theinitial valueis 0. See fglPixel Transfer.

params returns one value, the amount that color and stencil indices are
shifted during pixel transfers. Theinitial valueis 0. See fglPixel Transfer.

params returns one value, a mask indicating which bitplanes of each color
index buffer can be written. The initial valueisall 1's. See fgll ndexM ask.

params returns a single boolean value indicating whether the specified light
is enabled. The initial valueis GL_FAL SE. See fglLight and fglLightM o-
del.

params returns a single boolean value indicating whether lighting is
enabled. Theinitial valueis GL_FAL SE. SeefglLightModdl.

Page 6

FGLGET()

UNIX System V FGLGET()

GL_LIGHT_MODEL_AMBIENT

params returns four values: the red, green, blue, and apha components of
the ambient intensity of the entire scene. Integer values, if requested, are
linearly mapped from the internal floating-point representation such that 1.0
returns the most positive representable integer value, and —1.0 returns the
most negative representable integer value. The initial valueis (0.2, 0.2, 0.2,
1.0). SeefglLightModel.

GL_LIGHT_MODEL_LOCAL_VIEWER

params returns a single boolean value indicating whether specular reflection
calculations treat the viewer as being local to the scene. The initial value is
GL_FALSE. SeefglLightModel.

GL_LIGHT_MODEL_TWO_SIDE

params returns a single boolean value indicating whether separate materials
are used to compute lighting for front- and back-facing polygons. The initial
valueisGL_FALSE. SeefglLightModel.

GL_LINE_SMOOTH params returns a single boolean value indicating whether antialiasing of

linesisenabled. Theinitial valueisGL_FAL SE. SeefglLineWidth.

GL_LINE_SMOOTH_HINT

params returns one value, a symbolic constant indicating the mode of the
line antialiasing hint. Theinitial valueisGL_DONT_CARE. SeefglHint.

GL_LINE_STIPPLE params returns a single boolean value indicating whether stippling of lines

isenabled. Theinitial valueis GL_FAL SE. SeefglLineStipple.

GL_LINE_STIPPLE_PATTERN

params returns one value, the 16-bit line stipple pattern. The initial value is
al 1's. SeefglLineStipple.

GL_LINE_STIPPLE_REPEAT

params returns one value, the line stipple repeat factor. The initial value is
1. SeefglLineStipple.

GL_LINE_WIDTH params returns one vaue, the line width as specified with fglLineWidth.

Theinitia valueis 1.

GL_LINE_WIDTH_GRANULARITY

params returns one value, the width difference between adjacent supported
widths for antialiased lines. See fglLineWidth.

GL_LINE_WIDTH_RANGE

params returns two values: the smallest and largest supported widths for
antialiased lines. See fglLineWidth.

GL_LIST_BASE params returns one value, the base offset added to al names in arrays

presented to fglCallLists. Theinitial valueis 0. See fglListBase.

GL_LIST_INDEX params returns one value, the name of the display list currently under con-

struction. O isreturned if no display list is currently under construction. The
initial valueis0. SeefglNewL ist.

GL_LIST_MODE params returns one value, a symbolic constant indicating the construction

mode of the display list currently under construction. The initial value is 0.
See fgINewL ist.

GL_LOGIC OP_MODE params returns one value, a symbolic constant indicating the selected logic

Page 7

operation mode. Theinitial valueis GL_COPY . SeefglL ogicOp.

July 22, 1997

FGLGET()

UNIX System V FGLGET()

GL_MAP1 COLOR_4 params returns a single boolean value indicating whether 1D evaluation

generates colors. Theinitial valueisGL_FAL SE. SeefglMapl.

GL_MAP1_GRID_DOMAIN

params returns two values: the endpoints of the 1D map’s grid domain. The
initial valueis (0, 1). See fgIMapGrid.

GL_MAP1_GRID_SEGMENTS

params returns one value, the number of partitions in the 1D map's grid
domain. Theinitial valueis 1. SeefgiMapGrid.

GL_MAPL1 INDEX params returns a single boolean value indicating whether 1D evaluation

generates color indices. Theinitial valueisGL_FALSE. SeefglMapl.

GL_MAP1 NORMAL params returns a single boolean value indicating whether 1D evaluation

generates normals. Theinitial valueisGL_FALSE. SeefgiMapl.

GL_MAP1_TEXTURE_COORD 1

params returns a single boolean value indicating whether 1D evaluation
generates 1D texture coordinates. The initial value is GL_FALSE. See

fglMap1l.

GL_MAP1_TEXTURE_COORD 2

params returns a single boolean value indicating whether 1D evaluation
generates 2D texture coordinates. The initial value is GL_FALSE. See

fglMapl.

GL_MAP1 TEXTURE_COORD_3

GL_|

GL_

GL_

GL_

GL_|

GL_|

GL_

GL_

July 22, 1997

params returns a single boolean value indicating whether 1D evaluation
generates 3D texture coordinates. The initial value is GL_FALSE. See
fglMap1l.

MAP1 TEXTURE_COORD 4
params returns a single boolean value indicating whether 1D evaluation
generates 4D texture coordinates. The initial value is GL_FALSE. See
fglMap1l.

MAP1 VERTEX_3 params returns a single boolean value indicating whether 1D evaluation
generates 3D vertex coordinates. The initial value is GL_FALSE. See
fglMap1l.

MAP1 VERTEX 4 params returns a single boolean value indicating whether 1D evaluation
generates 4D vertex coordinates. The initial value is GL_FALSE. See
fglMap1l.

MAP2 COLOR 4 params returns a single boolean value indicating whether 2D evaluation
generates colors. Theinitial valueisGL_FALSE. SeefglMap2.

MAP2_GRID_DOMAIN
params returns four values: the endpoints of the 2D map’'s i and j grid
domains. Theinitial valueis (0,1; 0,1). See fglMapGrid.

MAP2_GRID_SEGMENTS
params returns two values. the number of partitions in the 2D map’'s i
and j grid domains. The initial valueis (1,1). See fgIMapGrid.

MAP2_INDEX params returns a single boolean value indicating whether 2D evaluation
generates color indices. Theinitial valueisGL_FALSE. SeefglMap2.
MAP2 NORMAL params returns a single boolean value indicating whether 2D evaluation

generates normals. Theinitial valueisGL_FALSE. SeefglMap2.

Page 8

FGLGET()

UNIX System V FGLGET()

GL_MAP2_TEXTURE_COORD 1

params returns a single boolean value indicating whether 2D evaluation
generates 1D texture coordinates. The initial value is GL_FALSE. See

fglMap2.

GL_MAP2_TEXTURE_COORD 2

params returns a single boolean value indicating whether 2D evaluation
generates 2D texture coordinates. The initial vaue is GL_FALSE. See

fglMap2.

GL_MAP2_TEXTURE_COORD_3

params returns a single boolean value indicating whether 2D evaluation
generates 3D texture coordinates. The initial value is GL_FALSE. See
fglM ap2.

GL_MAP2 TEXTURE_COORD 4

params returns a single boolean value indicating whether 2D evaluation
generates 4D texture coordinates. The initial value is GL_FALSE. See

fglMap2.

GL_MAP2 VERTEX_3 params returns a single boolean value indicating whether 2D evaluation

generates 3D vertex coordinates. The initial value is GL_FALSE. See
fglMap2.

GL_MAP2 VERTEX_ 4 params returns a single boolean value indicating whether 2D evaluation

generates 4D vertex coordinates. The initial value is GL_FALSE. See
fglMap2.

GL_MAP_COLOR params returns a single boolean value indicating if colors and color indices

are to be replaced by table lookup during pixel transfers. The initial valueis
GL_FALSE. SeefglPixelTransfer.

GL_MAP_STENCIL params returns a single boolean value indicating if stencil indices are to be

replaced by table lookup during pixel transfers. The initial value is
GL_FALSE. SeefglPixelTransfer.

GL_MATRIX_MODE params returns one value, a symbolic constant indicating which matrix

stack is currently the target of all matrix operations. The initia vaue is
GL_MODELVIEW. SeefglMatrixMode.

GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

params returns one value indicating the maximum supported depth of the
client attribute stack. See fglPushClientAttrib.

GL_MAX_ATTRIB_STACK_DEPTH

params returns one value, the maximum supported depth of the attribute
stack. The value must be at least 16. See fglPushAttrib.

GL_MAX_CLIP_PLANES params returns one value, the maximum number of application-defined clip-

ping planes. The value must be at least 6. See fgIClipPlane.

GL_MAX _EVAL_ORDER params returns one value, the maximum equation order supported by 1D

and 2D evaluators. The value must be at least 8. See fglMapl and
fglM ap2.

GL_MAX_LIGHTS params returns one value, the maximum number of lights. The value must

beat least 8. SeefglLight.

GL_MAX_LIST_NESTING params returns one vaue, the maximum recursion depth alowed during

Page 9

display-list traversal. The value must be at least 64. SeefglCallList.

July 22, 1997

FGLGET() UNIX System V FGLGET()

GL_MAX_MODELVIEW_STACK_DEPTH
params returns one value, the maximum supported depth of the modelview
matrix stack. The value must be at least 32. See fglPushM atrix.

GL_MAX_NAME_STACK_DEPTH
params returns one value, the maximum supported depth of the selection
name stack. The value must be at least 64. See fglPushName.

GL_MAX_PIXEL_MAP_TABLE
params returns one value, the maximum supported size of a fglPixelMap
lookup table. The value must be at least 32. See fglPixelM ap.

GL_MAX_PROJECTION_STACK_DEPTH
params returns one value, the maximum supported depth of the projection
matrix stack. The value must be at least 2. See fglPushMatrix.

GL_MAX _TEXTURE_SIZE
params returns one value. The value gives a rough estimate of the largest
texture that the GL can handle. If the GL version is 1.1 or greater, use
GL_PROXY_TEXTURE_1D or GL_PROXY_TEXTURE_2D to deter-
mineif atextureistoo large. See fglTexlmagelD and fgl T exlmage2D.

GL_MAX_TEXTURE_STACK_DEPTH
params returns one value, the maximum supported depth of the texture
matrix stack. The value must be at least 2. SeefglPushMatrix.

GL_MAX_VIEWPORT_DIMS
params returns two values. the maximum supported width and height of the
viewport. These must be at least as large as the visible dimensions of the
display being rendered to. See fglViewport.

GL_MODELVIEW_MATRIX
params returns sixteen values. the modelview matrix on the top of the
modelview matrix stack. Initially this matrix is the identity matrix. See
fglPushMatrix.

GL_MODELVIEW_STACK_DEPTH
params returns one value, the number of matrices on the modelview matrix
stack. Theinitial valueis 1. SeefglPushMatrix.

GL_NAME_STACK_DEPTH
params returns one value, the number of names on the selection name stack.
Theinitial valueis 0. See fglPushName.

GL_NORMAL_ARRAY params returns a single boolean value, indicating whether the normal array
isenabled. Theinitial valueis GL_FAL SE. See fgINor malPointer.

GL_NORMAL_ARRAY_STRIDE
params returns one value, the byte offset between consecutive normals in
the normal array. Theinitia valueis 0. See fgINor malPointer .

GL_NORMAL_ARRAY_TYPE
params returns one value, the data type of each coordinate in the normal
array. Theinitial valueisGL_FLOAT. See fgINor malPointer .

GL_NORMALIZE params returns a single boolean value indicating whether normals are
automatically scaled to unit length after they have been transformed to eye
coordinates. Theinitial valueisGL_FAL SE. See fgINormal.

GL_PACK_ALIGNMENT params returns one value, the byte alignment used for writing pixel data to
memory. Theinitial valueis4. See fglPixelStore.

July 22, 1997 Page 10

FGLGET() UNIX System V FGLGET()

Page 11

GL_PACK_LSB FIRST params returns a single boolean value indicating whether single-bit pixels
being written to memory are written first to the least significant bit of each
unsigned byte. Theinitial valueisGL_FAL SE. See fglPixelStore.

GL_PACK_ROW_LENGTH
params returns one value, the row length used for writing pixel data to
memory. Theinitial valueis 0. See fglPixelStore.

GL_PACK_SKIP_PIXELS params returns one value, the number of pixel locations skipped before the
first pixel iswritten into memory. Theinitial valueis 0. See fglPixelStore.

GL_PACK_SKIP_ROWS params returns one value, the number of rows of pixel locations skipped
before the first pixel is written into memory. The initial value is 0. See
folPixelStore.

GL_PACK_SWAP_BYTES params returns a single boolean value indicating whether the bytes of two-
byte and four-byte pixel indices and components are swapped before being
written to memory. Theinitial valueis GL_FAL SE. See fglPixelStore.

GL_PERSPECTIVE_CORRECTION_HINT
params returns one value, a symbolic constant indicating the mode of the
perspective correction hint. The initial value is GL_DONT_CARE. See
fglHint.

GL_PIXEL_MAP_A TO_A_SIZE
params returns one value, the size of the alpha-to-alpha pixd trandation
table. Theinitia valueis1. SeefglPixelMap.

GL_PIXEL_MAP B TO B_SIZE
params returns one value, the size of the blue-to-blue pixel translation table.
Theinitial valueis 1. SeefglPixelMap.

GL_PIXEL_MAP_G TO G SIZE
params returns one value, the size of the green-to-green pixel trandlation
table. Theinitial valueis 1. SeefglPixelMap.
GL_PIXEL_MAP_|_TO_A_SIZE
params returns one value, the size of the index-to-alpha pixel trandation
table. Theinitial valueis1. SeefglPixelMap.
GL_PIXEL_MAP_|I_TO_B_SIZE
params returns one value, the size of the index-to-blue pixel trandation
table. Theinitial valueis1. SeefglPixelMap.

GL_PIXEL_MAP_| TO_G_SIZE
params returns one value, the size of the index-to-green pixel trandlation
table. Theinitia valueis1. SeefglPixelMap.

GL_PIXEL_MAP_|_TO_|_SIZE
params returns one value, the size of the index-to-index pixel translation
table. Theinitia valueis 1. SeefglPixelMap.

GL_PIXEL_MAP_|_ TO_R SIZE
params returns one value, the size of the index-to-red pixel translation table.
Theinitial valueis 1. SeefglPixelMap.
GL_PIXEL_MAP_R_TO_R_SIZE
params returns one value, the size of the red-to-red pixel trandation table.
Theinitial valueis 1. SeefglPixelMap.

July 22, 1997

FGLGET() UNIX System V FGLGET()

GL_PIXEL_MAP_S TO_S SIZE
params returns one value, the size of the stencil-to-stencil pixel trandlation
table. Theinitial valueis1. SeefglPixelMap.

GL_POINT_SIZE params returns one value, the point size as specified by fglPointSize. The
initial valueis 1.

GL_POINT_SIZE_GRANULARITY
params returns one value, the size difference between adjacent supported
sizes for antialiased points. See fglPointSize.

GL_POINT_SIZE_RANGE params returns two values: the smallest and largest supported sizes for
antialiased points. The smallest size must be at most 1, and the largest size
must be at least 1. See fglPointSize.

GL_POINT_SMOOTH params returns a single boolean value indicating whether antialiasing of
pointsis enabled. Theinitial valueis GL_FAL SE. See fglPointSize.

GL_POINT_SMOOTH_HINT
params returns one value, a symbolic constant indicating the mode of the
point antialiasing hint. The initial value is GL_DONT_CARE. See
fglHint.

GL_POLYGON_MODE params returns two values. symbolic constants indicating whether front-
facing and back-facing polygons are rasterized as points, lines, or filled
polygons. Theinitial valueis GL_FILL. See fglPolygonM ode.

GL_POLYGON_OFFSET_FACTOR
params returns one value, the scaling factor used to determine the variable
offset that is added to the depth value of each fragment generated when a
polygon is rasterized. The initial valueis 0. See fglPolygonOffset.

GL_POLYGON_OFFSET _UNITS
params returns one value. This value is multiplied by an implementation-
specific value and then added to the depth value of each fragment generated
when apolygon is rasterized. The initial value is 0. See fglPolygonOffset.

GL_POLYGON_OFFSET_FILL
params returns a single boolean value indicating whether polygon offset is
enabled for polygons in fill mode. The initial value is GL_FALSE. See
fglPolygonOffset.

GL_POLYGON_OFFSET_LINE
params returns a single boolean value indicating whether polygon offset is
enabled for polygons in line mode. The initial value is GL_FALSE. See
fglPolygonOffset.

GL_POLYGON_OFFSET_POINT
params returns a single boolean value indicating whether polygon offset is
enabled for polygons in point mode. The initial value is GL_FALSE. See
fglPolygonOffset.

GL_POLYGON_SMOOTH params returns a single boolean value indicating whether antialiasing of
polygons is enabled. The initia value is GL_FALSE. See fglPolygon-
Mode.

GL_POLYGON_SMOOTH_HINT
params returns one value, a symbolic constant indicating the mode of the
polygon antidiasing hint. The initial value is GL_DONT_CARE. See
fglHint.

July 22, 1997 Page 12

FGLGET()

Page 13

UNIX System V FGLGET()

GL_POLYGON_STIPPLE params returns a single boolean value indicating whether polygon stippling

isenabled. Theinitial valueis GL_FAL SE. See fglPolygonStipple.

GL_PROJECTION_MATRIX

params returns sixteen values: the projection matrix on the top of the pro-
jection matrix stack. Initially this matrix isthe identity matrix. See fglPush-
Matrix.

GL_PROJECTION_STACK_DEPTH

GL_READ_BUFFER

GL_RED_BIAS

GL_RED BITS
GL_RED_SCALE

GL_RENDER_MODE

GL_RGBA_MODE

GL_SCISSOR_BOX

GL_SCISSOR_TEST

GL_SHADE_MODEL

GL_STENCIL_BITS

params returns one value, the number of matrices on the projection matrix
stack. Theinitial valueis1. SeefglPushMatrix.

params returns one value, a symbolic constant indicating which color buffer
is selected for reading. The initial value is GL_BACK if there is a back
buffer, otherwiseitisGL_FRONT. SeefglReadPixelsand fglAccum.

params returns one value, the red bias factor used during pixel transfers.
Theinitial valueisO.

params returns one value, the number of red bitplanes in each color buffer.

params returns one value, the red scale factor used during pixel transfers.
Theinitial valueis 1. See fglPixel Transfer.

params returns one value, a symbolic constant indicating whether the GL is
in render, select, or feedback mode. The initial valueis GL_RENDER. See
fglRender M ode.

params returns a single boolean value indicating whether the GL is in
RGBA mode (true) or color index mode (false). SeefglColor.

params returns four values: the x and y window coordinates of the
scissor box, followed by its width and height. Initially the x and y win-
dow coordinates are both 0 and the width and height are set to the size of
the window. See fglScissor.

params returns a single boolean value indicating whether scissoring is
enabled. Theinitial valueisGL_FAL SE. SeefglScissor.

params returns one value, a symbolic constant indicating whether the shad-
ing mode is flat or smooth. The initial value is GL_SMOOTH. See
fglShadeM odel.

params returns one value, the number of bitplanes in the stencil buffer.

GL_STENCIL_CLEAR_VALUE

GL_STENCIL_FAIL

GL_STENCIL_FUNC

params returns one value, the index to which the stencil bitplanes are
cleared. Theinitia valueis0. See fglClear Stencil.

params returns one value, a symbolic constant indicating what action is
taken when the stencil test fails. The initial value is GL_KEEP. See
fglStencilOp.

params returns one value, a symbolic constant indicating what function is
used to compare the stencil reference value with the stencil buffer value.
Theinitial valueisGL_ALWAYS. See fglStencilFunc.

GL_STENCIL_PASS DEPTH_FAIL

params returns one value, a symbolic constant indicating what action is
taken when the stencil test passes, but the depth test fails. Theinitial valueis
GL_KEEP. SeefglStencilOp.

July 22, 1997

FGLGET()

UNIX System V FGLGET()

GL_STENCIL_PASS DEPTH_PASS

params returns one value, a symbolic constant indicating what action is
taken when the stencil test passes and the depth test passes. The initial value
isGL_KEEP. SeefglStencilOp.

GL_STENCIL_REF params returns one value, the reference value that is compared with the

contents of the stencil buffer. Theinitial value is 0. See fglStencilFunc.

GL_STENCIL_TEST params returns a single boolean value indicating whether stencil testing of

fragments is enabled. The initial value is GL_FALSE. See fglStencilFunc
and fglStencilOp.

GL_STENCIL_VALUE_MASK

params returns one value, the mask that is used to mask both the stencil
reference value and the stencil buffer value before they are compared. The
initial valueisall 1's. SeefglStencilFunc.

GL_STENCIL_WRITEMASK

params returns one value, the mask that controls writing of the stencil bit-
planes. Theinitial valueisall 1's. See fglStencilM ask.

GL_STEREO params returns a single boolean value indicating whether stereo buffers (left
and right) are supported.

GL_SUBPIXEL _BITS params returns one value, an estimate of the number of bits of subpixel
resolution that are used to position rasterized geometry in window coordi-
nates. Theinitial valueis 4.

GL_TEXTURE_1D params returns a single boolean value indicating whether 1D texture map-

pingisenabled. Theinitial valueisGL_FALSE. SeefglTexIlmagelD.

GL_TEXTURE_1D_BINDING

params returns a single value, the name of the texture currently bound to the
target GL_TEXTURE_1D. Theinitial valueis0. SeefglBindTexture.

GL_TEXTURE_2D params returns a single boolean value indicating whether 2D texture map-

pingisenabled. Theinitial valueisGL_FAL SE. SeefglTexIlmage2D.

GL_TEXTURE_2D_BINDING

params returns a single value, the name of the texture currently bound to the
target GL_TEXTURE_2D. The initial valueis0. SeefglBindTexture.

GL_TEXTURE_COORD_ARRAY

params returns a single boolean value indicating whether the texture coordi-
nate array is enabled. The initial value is GL_FAL SE. See fgITexCoord-
Pointer.

GL_TEXTURE_COORD_ARRAY_SIZE

params returns one value, the number of coordinates per element in the tex-
ture coordinate array. Theinitia value is 4. See fgl TexCoordPointer.

GL_TEXTURE_COORD_ARRAY_STRIDE

params returns one value, the byte offset between consecutive elements in
the texture coordinate array. The initial value is 0. See fglTexCoord-
Pointer.

GL_TEXTURE_COORD_ARRAY_TYPE

July 22, 1997

params returns one value, the data type of the coordinates in the texture
coordinate array. The initial value is GL_FLOAT. See fglTexCoord-
Pointer.

Page 14

FGLGET()

UNIX System V FGLGET()

GL_TEXTURE_GEN_Q params returns a single boolean value indicating whether automatic genera-

tion of the g texture coordinate is enabled. The initial valueis GL_FAL SE.
See fgl TexGen.

GL_TEXTURE_GEN_R params returns a single boolean value indicating whether automatic genera-

tion of the r texture coordinate is enabled. The initial value is GL_FAL SE.
See fglTexGen.

GL_TEXTURE_GEN_S params returns a single boolean value indicating whether automatic genera-

tion of the Stexture coordinate is enabled. The initial valueis GL_FAL SE.
See fgl TexGen.

GL_TEXTURE_GEN_T params returns a single boolean value indicating whether automatic genera-

tion of the T texture coordinate is enabled. The initial valueisGL_FAL SE.
See fgITexGen.

GL_TEXTURE_MATRIX params returns sixteen values: the texture matrix on the top of the texture

matrix stack. Initially this matrix isthe identity matrix. See fglPushMatrix.

GL_TEXTURE_STACK_DEPTH

params returns one value, the number of matrices on the texture matrix
stack. Theinitial valueis1. SeefglPushMatrix.

GL_UNPACK_ALIGNMENT

params returns one value, the byte alignment used for reading pixel data
from memory. Theinitial value is 4. See fglPixelStore.

GL_UNPACK _LSB _FIRST params returns a single boolean value indicating whether single-bit pixels

being read from memory are read first from the least significant bit of each
unsigned byte. Theinitial valueisGL_FAL SE. See fglPixelStore.

GL_UNPACK_ROW_LENGTH

params returns one value, the row length used for reading pixel data from
memory. Theinitial valueis 0. See fglPixelStore.

GL_UNPACK_SKIP_PIXELS

params returns one value, the number of pixel locations skipped before the
first pixel isread from memory. Theinitial valueis 0. See fglPixel Store.

GL_UNPACK_SKIP_ROWS

params returns one value, the number of rows of pixel locations skipped
before the first pixel is read from memory. The initial value is 0. See fglPix-
elStore.

GL_UNPACK_SWAP_BYTES

params returns a single boolean value indicating whether the bytes of two-
byte and four-byte pixel indices and components are swapped after being
read from memory. Theinitial valueis GL_FAL SE. See fglPixelStore.

GL_VERTEX_ARRAY params returns a single boolean value indicating whether the vertex array is

enabled. Theinitial valueisGL_FALSE. SeefglVertexPointer.

GL_VERTEX_ARRAY_SIZE

params returns one value, the number of coordinates per vertex in the ver-
tex array. Theinitial valueis4. SeefglVertexPointer.

GL_VERTEX_ARRAY_STRIDE

Page 15

params returns one value, the byte offset between consecutive vertexes in
the vertex array. Theinitial valueis 0. See fglVertexPointer.

July 22, 1997

FGLGET() UNIX System V FGLGET()

GL_VERTEX_ARRAY_TYPE
params returns one value, the data type of each coordinate in the vertex
array. Theinitial valueisGL_FL OAT. SeefglVertexPointer .

GL_VIEWPORT params returns four values: the x and y window coordinates of the
viewport, followed by its width and height. Initially the x and y win-
dow coordinates are both set to 0, and the width and height are set to the
width and height of the window into which the GL will do its rendering.

See fglViewport.

GL_ZOOM_X params returns one value, the x pixel zoom factor. The initial value is 1.
See fglPixelZoom.

GL_ZOOM_Y params returns one value, the y pixel zoom factor. The initial value is 1.

See fglPixelZoom.
Many of the boolean parameters can aso be queried more easily using fgll sEnabled.

NOTES
GL_COLOR_LOGIC_OP, GL_COLOR_ARRAY, GL_COLOR_ARRAY_SIZE,
GL_COLOR_ARRAY_STRIDE, GL_COLOR_ARRAY TYPE, GL_EDGE_FLAG_ARRAY,
GL_EDGE_FLAG_ARRAY_STRIDE, GL_INDEX_ARRAY, GL_INDEX_ARRAY_STRIDE,

GL_INDEX_ARRAY_TYPE, GL_INDEX_LOGIC_OP, GL_NORMAL_ARRAY,
GL_NORMAL_ARRAY_STRIDE, GL_NORMAL_ARRAY_TYPE,
GL_POLYGON_OFFSET_UNITS, GL_POLYGON_OFFSET_FACTOR,
GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE,
GL_POLYGON_OFFSET_POINT, GL_TEXTURE_COORD_ARRAY,
GL_TEXTURE_COORD_ARRAY_SIZE, GL_TEXTURE_COORD_ARRAY_STRIDE,

GL_TEXTURE_COORD_ARRAY_TYPE, GL_VERTEX_ARRAY, GL_VERTEX_ARRAY_SIZE,
GL_VERTEX_ARRAY_STRIDE, and GL_VERTEX_ARRAY_TYPE are available only if the GL
versionis 1.1 or greater.

ERRORS
GL_INVALID_ENUM isgenerated if pname is not an accepted value.

GL_INVALID_OPERATION is generated if fglGet is executed between the execution of fgiBegin and
the corresponding execution of fglEnd.

SEE ALSO
fglGetClipPlane, fglGetError, fglGetL ight, fglGetM ap, fglGetMaterial, fglGetPixelM ap, fglGetPoin-
terv, fglGetPolygonStipple, fglGetString, folGetTexEnv, fglGetTexGen, fglGetTexl mage, fglGet Tex-
L evelParameter, fglGet T exParameter, fgll sEnabled

July 22, 1997 Page 16

FGLGETCLIPPLANE() UNIX System V FGLGETCLIPPLANE()

NAME
fglGetClipPlane - return the coefficients of the specified clipping plane

FORTRAN SPECIFICATION
SUBROUTINE fglGetClipPlane(INTEGER* 4 plane,
CHARACTER*8 equation)

delim $$

PARAMETERS
plane Specifiesaclipping plane. The number of clipping planes depends on the implementation, but at
least six clipping planes are supported. They are identified by symbolic names of the form
GL_CLIP_PLANESi$where0<$i $<GL_MAX_CLIP_PLANES.

equation Returns four double-precision values that are the coefficients of the plane equation of plane in
eye coordinates. Theinitial valueis (0, 0, O, 0).

DESCRIPTION
fglGetClipPlane returns in equation the four coefficients of the plane equation for plane.

NOTES
Itis always the case that GL_CLIP_PLANESi = GL_CLIP_PLANEO + i.

If an error is generated, no change is made to the contents of equation.

ERRORS
GL_INVALID_ENUM isgenerated if planeis not an accepted value.

GL_INVALID_OPERATION is generated if fglGetClipPlane is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

SEE ALSO
folClipPlane

Page 1 July 22, 1997

FGLGETERROR() UNIX System V FGLGETERROR()

NAME

fglGetError — return error information

FORTRAN SPECIFICATION

INTEGER* 4 fglGetError ()

DESCRIPTION

fglGetError returns the value of the error flag. Each detectable error is assigned a numeric code and sym-
bolic name. When an error occurs, the error flag is set to the appropriate error code value. No other errors
are recorded until fglGetError is called, the error code is returned, and the flag is reset to
GL_NO_ERROR. If acall to fglGetError returns GL_NO_ERROR, there has been no detectable error
sincethelast cal to fglGetError, or since the GL wasinitialized.

To alow for distributed implementations, there may be several error flags. If any single error flag has
recorded an error, the value of that flag is returned and that flag is reset to GL_NO_ERROR when
fglGetError iscaled. If morethan one flag has recorded an error, fglGetError returns and clears an arbi-
trary error flag vaue. Thus, fglGetError should aways be called in a loop, until it returns
GL_NO_ERROR, if dl error flags are to be reset.

Initially, all error flags are set to GL_NO_ERROR.
The following errors are currently defined:

GL_NO_ERROR No error has been recorded. The value of this symbolic constant is
guaranteed to be 0.

GL_INVALID_ENUM An unacceptable value is specified for an enumerated argument. The
offending command is ignored, and has no other side effect than to set
the error flag.

GL_INVALID_VALUE A numeric argument is out of range. The offending command is

ignored, and has no other side effect than to set the error flag.

GL_INVALID_OPERATION The specified operation is not alowed in the current state. The
offending command is ignored, and has no other side effect than to set
the error flag.

GL_STACK_OVERFLOW This command would cause a stack overflow. The offending com-
mand isignored, and has no other side effect than to set the error flag.

GL_STACK_UNDERFLOW This command would cause a stack underflow. The offending com-
mand isignored, and has no other side effect than to set the error flag.

GL_OUT_OF MEMORY There is not enough memory |eft to execute the command. The state
of the GL is undefined, except for the state of the error flags, after this
error isrecorded.

When an error flag is set, results of a GL operation are undefined only if GL_OUT_OF_MEMORY has
occurred. In all other cases, the command generating the error isignored and has no effect on the GL state
or frame buffer contents. If the generating command returns a value, it returns 0. If fglGetError itself
generates an error, it returns 0.

ERRORS

Page 1

GL_INVALID_OPERATION isgenerated if fglGetError isexecuted between the execution of fglBegin
and the corresponding execution of fglEnd. In this case fglGetError returnsO.

July 22, 1997

FGLGETLIGHT()

NAME

UNIX System V FGLGETLIGHT()

fglGetLightfv, fglGetLightiv — return light source parameter values

FORTRAN SPECIFICATION
SUBROUTINE fglGetL ightfv(INTEGER* 4 light,

INTEGER* 4 pname,
CHARACTER*8 params)

SUBROUTINE fglGetL ightiv(INTEGER*4 light,

delim $$

PARAMETERS

Page 1

light Specifiesalight
eight lights are

INTEGER* 4 pname,
CHARACTER*8 params)

source. The number of possible lights depends on the implementation, but at |east
supported. They are identified by symbolic names of the form GL_LIGHTSi

where0<$i $<GL_MAX_LIGHTS.
pname Specifies a light source parameter for light. Accepted symbolic names are GL_AMBIENT,

GL_DIFFUSE,
GL_SPOT_EX

GL_SPECULAR, GL_POSITION, GL_SPOT_DIRECTION,
PONENT, GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION,

GL_LINEAR_ATTENUATION, and GL_QUADRATIC_ATTENUATION.
params Returns the requested data.

DESCRIPTION
fglGetLight returns in params the value or values of a light source parameter. light names the light and is
a symbolic name of the form GL_LIGHT$$ for 0<i<GL_MAX_LIGHTS, where
GL_MAX_LIGHTSisan implementation dependent constant that is greater than or equal to eight. pname

specifies one of ten light

source parameters, again by symbolic name.

The following parameters are defined:

GL_AMBIENT

GL_DIFFUSE

GL_SPECULAR

params returns four integer or floating-point values representing the ambient
intensity of the light source. Integer values, when requested, are linearly mapped
from the internal floating-point representation such that 1.0 maps to the most posi-
tive representable integer value, and —1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1, 1], the corresponding
integer return value is undefined. Theinitia vaueis(0, 0, 0, 1).

params returns four integer or floating-point values representing the diffuse inten-
sity of the light source. Integer values, when requested, are linearly mapped from
the internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and —1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1, 1], the corresponding
integer return value is undefined. The initial valuefor GL_LIGHTOis(1, 1, 1, 1);
for other lights, the initial valueis (0, 0, O, 0).

params returns four integer or floating-point values representing the specular
intensity of the light source. Integer values, when requested, are linearly mapped
from the internal floating-point representation such that 1.0 maps to the most posi-
tive representable integer value, and —1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1, 1], the corresponding
integer return value is undefined. The initial value for GL_LIGHTOis(1, 1, 1, 1);
for other lights, theinitial valueis (0, 0, O, 0).

July 22, 1997

FGLGETLIGHT() UNIX System V FGLGETLIGHT()

GL_POSITION params returns four integer or floating-point values representing the position of
the light source. Integer values, when requested, are computed by rounding the
internal floating-point values to the nearest integer value. The returned values are
those maintained in eye coordinates. They will not be equal to the values
specified using fglLight, unless the modelview matrix was identity at the time
fglLight was called. Theinitial valueis (0, 0, 1, 0).

GL_SPOT_DIRECTION

params returns three integer or floating-point values representing the direction of
the light source. Integer values, when requested, are computed by rounding the
internal floating-point values to the nearest integer value. The returned values are
those maintained in eye coordinates. They will not be equal to the values
specified using fglLight, unless the modelview matrix was identity at the time
fglLight was called. Although spot direction is normalized before being used in
the lighting equation, the returned values are the transformed versions of the
specified values prior to normalization. Theinitial valueis (0, 0, —1).

GL_SPOT_EXPONENT
params returns a single integer or floating-point value representing the spot
exponent of the light. An integer value, when requested, is computed by rounding
the internal floating-point representation to the nearest integer. The initia value is
0.

GL_SPOT_CUTOFF params returns asingle integer or floating-point value representing the spot cutoff
angle of the light. An integer value, when requested, is computed by rounding the
internal floating-point representation to the nearest integer. The initial value is
180.

GL_CONSTANT_ATTENUATION
params returns a single integer or floating-point value representing the constant
(not distance-related) attenuation of the light. An integer value, when requested,
is computed by rounding the internal floating-point representation to the nearest
integer. Theinitial valueis 1.

GL_LINEAR_ATTENUATION
params returns a single integer or floating-point value representing the linear
attenuation of the light. An integer value, when requested, is computed by round-
ing the interna floating-point representation to the nearest integer. The initial
valueisO.

GL_QUADRATIC_ATTENUATION
params returns a single integer or floating-point value representing the quadratic
attenuation of the light. An integer value, when requested, is computed by round-
ing the internal floating-point representation to the nearest integer. The initial
valueisO.

NOTES
Itisalwaysthe casethat GL_LIGHT$$=GL_LIGHTO + i.

If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID_ENUM isgenerated if light or pname is not an accepted value.

GL_INVALID_OPERATION is generated if fglGetLight is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

SEE ALSO
fglLight

July 22, 1997 Page 2

FGLGETMAP()

NAME

UNIX System V FGLGETMAP()

fglGetM apdv, fglGetM apfv, fglGetM apiv - return evaluator parameters

FORTRAN SPECIFICATION
SUBROUTINE fglGetM apdv(INTEGER*4 target,

INTEGER*4 query,
CHARACTER*8vV)
SUBROUTINE fglGetM apfv(INTEGER* 4 tar get,
INTEGER* 4 query,
CHARACTER*8vV)
SUBROUTINE fglGetM apiv(INTEGER* 4 target,
INTEGER*4 query,
CHARACTER*8V)
delim $$
PARAMETERS
target Specifies the symbolic name of a map. Accepted values are GL_MAP1 COLOR 4,
GL_MAP1_INDEX, GL_MAP1 NORMAL, GL_MAP1 TEXTURE_COORD 1,

Page 1

GL_MAPL TEXTURE_COORD 2,

GL_MAPL_TEXTURE_COORD 3,

GL_MAPL TEXTURE_COORD 4, GL_MAP1 VERTEX_ 3, GL_MAPL VERTEX 4,
GL_MAP2_COLOR_4, GL_MAP2_INDEX, GL_MAP2_NORMAL,

GL_MAP2_TEXTURE_COORD 1,
GL_MAP2_TEXTURE_COORD_3,

GL_MAP2_TEXTURE_COORD 2,
GL_MAP2_TEXTURE_COORD 4,

GL_MAP2_VERTEX_3,and GL_MAP2_VERTEX_4.

query Specifies which parameter to return. Symbolic names GL_COEFF, GL_ORDER, and
GL_DOMAIN are accepted.

% Returns the requested data.

DESCRIPTION
fglMapl and fgiM ap2 define evaluators. fglGetM ap returns evaluator parameters. target chooses a map,
query selects a specific parameter, and v points to storage where the values will be returned.

The acceptable values for the target parameter are described in the fgiMap1 and fgIM ap?2 reference pages.

query can assume the following values:

GL_COEFF

GL_ORDER

GL_DOMAIN

v returns the control points for the evaluator function. One-dimensiona evaluators
return $order$ control points, and two-dimensional evaluators return $uorder times
vorder$ control points. Each control point consists of one, two, three, or four integer,
single-precision floating-point, or double-precision floating-point values, depending on
the type of the evaluator. The GL returns two-dimensional control points in row-major
order, incrementing the $uorder$ index quickly and the $vorder$ index after each row.
Integer values, when requested, are computed by rounding the interna floating-point
values to the nearest integer values.

v returns the order of the evaluator function. One-dimensional evaluators return a single
value, $order$. The initial value is 1. Two-dimensional evauators return two values,
$uorder$ and $vorder$. Theinitia valueis1,1.

v returns the linear u and v mapping parameters. One-dimensional evaluators
return two values, ul and $u2$, as specified by fgiMapl. Two-dimensiona evalua-
tors return four values (ul, $u2$, $v1$, and $v2%) as specified by fglMap2. Integer
values, when requested, are computed by rounding the internal floating-point values to
the nearest integer values.

July 22, 1997

FGLGETMAP() UNIX System V FGLGETMAP()

NOTES
If an error is generated, no change is made to the contents of v.

ERRORS
GL_INVALID_ENUM isgenerated if either target or query is not an accepted value.

GL_INVALID_OPERATION is generated if fglGetMap is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

SEE ALSO
fglEvalCoord, fglMap1, fgiMap2

July 22, 1997 Page 2

FGLGETMATERIAL ()

NAME

UNIX System V FGLGETMATERIAL ()

fglGetM aterialfv, fglGetM aterialiv — return material parameters

FORTRAN SPECIFICATION

SUBROUTINE fglGetM aterialfv(INTEGER* 4 face,

INTEGER* 4 pname,
CHARACTER*8 params)

SUBROUTINE fglGetM aterialiv(INTEGER* 4 face,

delim $$
PARAMETERS

INTEGER* 4 pname,
CHARACTER*8 params)

face Specifies which of the two materials is being queried. GL_FRONT or GL_BACK are accepted,
representing the front and back materials, respectively.

pname Specifies the material parameter to return. GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
GL_EMISSION, GL_SHININESS, and GL_COL OR_INDEXES are accepted.

params Returns the requested data.

DESCRIPTION

fglGetMaterial returns in params the value or values of parameter pname of material face. Six parameters

are defined:
GL_AMBIENT

GL_DIFFUSE

GL_SPECULAR

GL_EMISSION

Page 1

params returns four integer or floating-point values representing the ambient
reflectance of the material. Integer values, when requested, are linearly mapped
from the internal floating-point representation such that 1.0 maps to the most
positive representable integer value, and -1.0 maps to the most negative
representable integer value. If theinternal value is outside the range [-1, 1], the
corresponding integer return value is undefined. The initia value is (0.2, 0.2,
0.2,1.0)

params returns four integer or floating-point values representing the diffuse
reflectance of the material. Integer values, when requested, are linearly mapped
from the internal floating-point representation such that 1.0 maps to the most
positive representable integer value, and -1.0 maps to the most negative
representable integer value. If theinternal value is outside the range [-1, 1], the
corresponding integer return value is undefined. The initia value is (0.8, 0.8,
0.8, 1.0).

params returns four integer or floating-point values representing the specular
reflectance of the material. Integer values, when requested, are linearly mapped
from the internal floating-point representation such that 1.0 maps to the most
positive representable integer value, and -1.0 maps to the most negative
representable integer value. If theinternal value is outside the range [-1, 1], the
corresponding integer return value is undefined. The initial valueis (0, 0, O, 1).

params returns four integer or floating-point values representing the emitted
light intensity of the material. Integer values, when requested, are linearly
mapped from the internal floating-point representation such that 1.0 maps to the
most positive representable integer value, and —1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1, 1.0],
the corresponding integer return value is undefined. The initial valueis (0, O, O,
1).

July 22, 1997

FGLGETMATERIAL () UNIX System V FGLGETMATERIAL ()

GL_SHININESS params returns one integer or floating-point value representing the specular
exponent of the material. Integer values, when requested, are computed by
rounding the internal floating-point value to the nearest integer value. The ini-
tial valueisO.

GL_COLOR_INDEXES params returns three integer or floating-point values representing the ambient,
diffuse, and specular indices of the material. These indices are used only for
color index lighting. (All the other parameters are used only for RGBA light-
ing.) Integer values, when requested, are computed by rounding the internal
floating-point values to the nearest integer values.

NOTES
If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID_ENUM isgenerated if face or pname is not an accepted value.

GL_INVALID_OPERATION is generated if fglGetMaterial is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

SEE ALSO
fglM aterial

July 22, 1997 Page 2

FGLGETPIXELMAP() UNIX System V FGLGETPIXELMAP()

NAME
foglGetPixelM apfv, fglGetPixelM apuiv, fglGetPixelM apusv — return the specified pixel map

FORTRAN SPECIFICATION
SUBROUTINE fglGetPixelM apfv(INTEGER* 4 map,
CHARACTER*8 values)
SUBROUTINE fglGetPixelM apuiv(INTEGER*4 map,
CHARACTER*8 values)
SUBROUTINE fglGetPixelM apusv(INTEGER* 4 map,
CHARACTER*8 values)

PARAMETERS
map Specifies the name of the pixel map to return. Accepted values are GL_PIXEL_MAP_| TO I,
GL_PIXEL_MAP_STO_S, GL_PIXEL_MAP_|_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_ TO B, GL_PIXEL_MAP_I _TO_A, GL_PIXEL_MAP R _TO R,
GL_PIXEL_MAP_G_TO_G,GL_PIXEL_MAP B TO B,andGL_PIXEL_MAP_A_ TO_A

values Returns the pixel map contents.

DESCRIPTION
See the fglPixelMap reference page for a description of the acceptable values for the map parameter.
fglGetPixelM ap returns in values the contents of the pixel map specified in map. Pixel maps are used dur-
ing the execution of fglReadPixels, fglDrawPixels, fglCopyPixels, fglTexImagelD, and fgl T exl mage2D
to map color indices, stencil indices, color components, and depth components to other values.

Unsigned integer values, if requested, are linearly mapped from the internal fixed or floating-point
representation such that 1.0 maps to the largest representable integer value, and 0.0 maps to 0. Return
unsigned integer values are undefined if the map value was not in the range [0,1].

To determine the required size of map, call fglGet with the appropriate symbolic constant.

NOTES
If an error is generated, no change is made to the contents of values.

ERRORS
GL_INVALID_ENUM isgenerated if map is not an accepted value.

GL_INVALID_OPERATION is generated if fglGetPixelMap is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGet with argument GL_PIXEL_MAP_|_TO_|_SIZE
fglGet with argument GL_PIXEL_MAP_S TO_S SIZE
fglGet with argument GL_PIXEL_MAP_| TO_R_SIZE
fglGet with argument GL_PIXEL_MAP_|_TO_G_SIZE
fglGet with argument GL_PIXEL_MAP_|_TO_B_SIZE
fglGet with argument GL_PIXEL_MAP_| TO_A_SIZE
fglGet with argument GL_PIXEL_MAP_R_TO_R_SIZE
fglGet with argument GL_PIXEL_MAP_G_TO_G_SIZE
fglGet with argument GL_PIXEL_MAP_B_TO_B_SIZE
fglGet with argument GL_PIXEL_MAP_A_TO_A_SIZE
fglGet with argument GL_MAX_PIXEL_MAP_TABLE

SEE ALSO
fglCopyPixels, fglDrawPixels, fglPixelM ap, fglPixe Transfer, fglReadPixels, fglTexI magelD,
fgl Texlmage2D

Page 1 July 22, 1997

FGLGETPOINTERV () UNIX System V FGLGETPOINTERV ()

NAME
fglGetPointerv — return the address of the specified pointer

FORTRAN SPECIFICATION
SUBROUTINE fglGetPointer v(INTEGER* 4 pname,

CHARACTER*8 *params)
delim $$
PARAMETERS
pname Specifies the array or buffer pointer to be returned. Symbolic constants
GL_COLOR_ARRAY_POINTER, GL_EDGE_FLAG_ARRAY_POINTER,
GL_FEEDBACK_BUFFER_POINTER, GL_INDEX_ARRAY_POINTER,
GL_NORMAL_ARRAY_POINTER, GL_TEXTURE_COORD_ARRAY_POINTER,
GL_SELECTION_BUFFER_POINTER, and GL_VERTEX_ARRAY_POINTER are
accepted.

params Returns the pointer value specified by pname.

DESCRIPTION
fglGetPointerv returns pointer information. pname is a symbolic constant indicating the pointer to be
returned, and paramsis a pointer to alocation in which to place the returned data

NOTES
fglGetPointerv isavailable only if the GL versionis 1.1 or greater.

The pointers are all client-side state.
Theinitial value for each pointer isO.

ERRORS
GL_INVALID_ENUM isgenerated if pnameis not an accepted value.

SEE ALSO
fglArrayElement, fglColorPointer, fglDrawArrays, fglEdgeFlagPointer, fglFeedbackBuffer, fglln-
dexPointer, fgllnterleavedArrays, fglNormalPointer, fglSelectBuffer, fgl TexCoor dPointer, fglVertex-
Pointer

Page 1 July 22, 1997

FGLGETPOLY GONSTIPPLE() UNIX System V FGLGETPOLY GONSTIPPLE()

NAME
fglGetPolygonStipple - return the polygon stipple pattern

FORTRAN SPECIFICATION
SUBROUTINE fglGetPolygonStipple{ CHARACTER* 256 mask)

delim $$

PARAMETERS
mask Returns the stipple pattern. Theinitial valueisall 1's.

DESCRIPTION
fglGetPolygonStipple returns to mask a $32 times 32$ polygon stipple pattern. The pattern is packed into
memory as if fglReadPixels with both height and width of 32, type of GL_BITMAP, and format of
GL_COLOR_INDEX were called, and the stipple pattern were stored in an internal $32 times 32$ color
index buffer. Unlike fglReadPixels, however, pixel transfer operations (shift, offset, pixel map) are not
applied to the returned stipple image.

NOTES
If an error is generated, no change is made to the contents of mask.

ERRORS
GL_INVALID_OPERATION isgenerated if fglGetPolygonStippleis executed between the execution of
fglBegin and the corresponding execution of fglEnd.

SEE ALSO
fglPixelStore, fglPixel Transfer, fglPolygonStipple, fglReadPixels

Page 1 July 22, 1997

FGLGETSTRING() UNIX System V FGLGETSTRING()

NAME

fglGetString — return a string describing the current GL connection

FORTRAN SPECIFICATION

CHARACTER*256 fglGetString(INTEGER* 4 name)

PARAMETERS

name Specifies a symbolic constant, one of GL_VENDOR, GL_RENDERER, GL_VERSION, or
GL_EXTENSIONS.

DESCRIPTION

NOTES

fglGetString returns a pointer to a static string describing some aspect of the current GL connection. name
can be one of the following:

GL_VENDOR Returns the company responsible for this GL implementation. This name does not
change from release to release.

GL_RENDERER Returns the name of the renderer. This name is typically specific to a particular
configuration of a hardware platform. It does not change from release to release.

GL_VERSION Returns a version or release number.
GL_EXTENSIONS Returns a space-separated list of supported extensionsto GL.

Because the GL does not include queries for the performance characteristics of an implementation, some
applications are written to recognize known platforms and modify their GL usage based on known perfor-
mance characteristics of these platforms. Strings GL_VENDOR and GL_RENDERER together uniquely
specify a platform. They do not change from release to release and should be used by platform-recognition
agorithms.

Some applications want to make use of features that are not part of the standard GL. These features may be
implemented as extensions to the standard GL. The GL_EXTENSIONS string is a space-separated list of
supported GL extensions. (Extension hames never contain a space character.)

The GL_VERSION string begins with a version number. The version number uses one of these forms:

major_number.minor_number
major_number.minor_number.release_number

Vendor-specific information may follow the version number. Its format depends on the implementation, but
a space always separates the version number and the vendor-specific information.

All strings are null-terminated.

If an error is generated, fglGetString returns O.

The client and server may support different versions or extensions. fglGetString aways returns a compa
tible version number or list of extensions. The release number always describes the server.

ERRORS

Page 1

GL_INVALID_ENUM isgenerated if name is not an accepted value.

GL_INVALID_OPERATION isgenerated if fglGetString is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

July 22, 1997

FGLGETTEXENYV () UNIX System V FGLGETTEXENV ()

NAME
folGetTexEnvfv, fglGetTexEnviv — return texture environment parameters

FORTRAN SPECIFICATION
SUBROUTINE fglGetTexEnvfv(INTEGER* 4 target,
INTEGER* 4 pname,
CHARACTER*8 params)
SUBROUTINE fglGetTexEnviv(INTEGER*4 target,
INTEGER* 4 pname,
CHARACTER*8 params)

PARAMETERS
target Specifies atexture environment. Must be GL_TEXTURE_ENV.

pname
Specifies the symbolic name of a texture environment parameter. Accepted values are
GL_TEXTURE_ENV_MODE and GL_TEXTURE_ENV_COLOR.

params
Returns the requested data.

DESCRIPTION
fglGetTexEnv returns in params selected values of a texture environment that was specified with fglTex-
Env. target specifies a texture environment. Currently, only one texture environment is defined and sup-
ported: GL_TEXTURE_ENV.

pname names a specific texture environment parameter, as follows:

GL_TEXTURE_ENV_MODE
params returns the single-valued texture environment mode, a symbolic constant. The initial
vaueisGL_MODULATE.

GL_TEXTURE_ENV_COLOR
params returns four integer or floating-point values that are the texture environment color.
Integer values, when requested, are linearly mapped from the internal floating-point represen-
tation such that 1.0 maps to the most positive representable integer, and —1.0 maps to the most
negative representable integer. The initial valueis (0, 0, O, 0).

NOTES
If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID_ENUM isgenerated if target or pname is not an accepted value.

GL_INVALID_OPERATION is generated if fglGetTexEnv is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

SEE ALSO
fglTexEnv

Page 1 July 22, 1997

FGLGETTEXGEN() UNIX System V FGLGETTEXGEN()

NAME
fglGetTexGendv, fglGetTexGenfv, fglGet TexGeniv — return texture coordinate generation parameters

FORTRAN SPECIFICATION
SUBROUTINE fglGetTexGendv(INTEGER*4 coord,

INTEGER* 4 pname,
CHARACTER* 8 params)

SUBROUTINE fglGetTexGenfv(INTEGER* 4 coord,
INTEGER*4 pname,
CHARACTER*8 params)

SUBROUTINE fglGetTexGeniv(INTEGER*4 coord,
INTEGER* 4 pname,
CHARACTER*8 params)

delim $$

PARAMETERS

coord Specifies atexture coordinate. MustbeGL_S, GL_T,GL_R,or GL_Q.

pname Specifies the symbolic name of the value(s) to be returned. Must be either
GL_TEXTURE_GEN_MODE or the name of one of the texture generation plane equations:
GL_OBJECT_PLANE or GL_EYE_PLANE.

params Returns the requested data.

DESCRIPTION
fglGetTexGen returns in params selected parameters of a texture coordinate generation function that was
specified using fglTexGen. coord names one of the (s, t, r,) texture coordinates, using the symbolic con-
stant GL_S, GL_T,GL_R, or GL_Q.

pname specifies one of three symbolic names:

GL_TEXTURE_GEN_MODE params returns the single-valued texture generation function, a symbolic
constant. Theinitial valueisGL_EYE_LINEAR.

GL_OBJECT_PLANE params returns the four plane equation coefficients that specify object
linear-coordinate generation. Integer values, when requested, are
mapped directly from the internal floating-point representation.

GL_EYE_PLANE params returns the four plane equation coefficients that specify eye
linear-coordinate generation. Integer values, when requested, are
mapped directly from the internal floating-point representation. The
returned values are those maintained in eye coordinates. They are not
equal to the values specified using fglTexGen, unless the modelview
matrix was identity when fgl TexGen was called.

NOTES
If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID_ENUM isgenerated if coord or pname is not an accepted value.

GL_INVALID_OPERATION is generated if fglGetTexGen is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

SEE ALSO
foglTexGen

Page 1 July 22, 1997

FGLGETTEXIMAGE() UNIX System V FGLGETTEXIMAGE()

NAME

fglGetTexl mage — return a texture image

FORTRAN SPECIFICATION

SUBROUTINE fglGetTexl mage(INTEGER* 4 target,
INTEGER*4 level,

INTEGER* 4 format,
INTEGER* 4 type,
CHARACTER*8 pixels)
delim $$
PARAMETERS

target Specifies which texture is to be obtained. GL_TEXTURE_1D and GL_TEXTURE_2D are
accepted.

level Specifies the level-of-detail number of the desired image. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

format
Specifies a pixel format for the returned data. The supported formats are GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type Specifies a pixel type for the returned data. The supported types are GL_UNSIGNED_BYTE,
GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and
GL_FLOAT.

pixels Returnsthe texture image. Should be a pointer to an array of the type specified by type.

DESCRIPTION

Page 1

fglGetTexI mage returns a texture image into pixels. target specifies whether the desired texture image is
one specified by fglTeximagelD (GL_TEXTURE_1D) or by fglTeximage2D (GL_TEXTURE_2D).
level specifies the level-of-detail number of the desired image. format and type specify the format and type
of the desired image array. See the reference pages fglTexlmagelD and fglDrawPixels for a description
of the acceptable values for the format and type parameters, respectively.

To understand the operation of fglGetTexlmage, consider the selected internal four-component texture
image to be an RGBA color buffer the size of the image. The semantics of fglGetTexlmage are then
identical to those of fglReadPixels called with the same format and type, with x and y set to 0, width set to
the width of the texture image (including border if one was specified), and height set to 1 for 1D images, or
to the height of the texture image (including border if one was specified) for 2D images. Because the inter-
nal texture image is an RGBA image, pixel formats GL_COLOR_INDEX, GL_STENCIL_INDEX, and
GL_DEPTH_COMPONENT are not accepted, and pixel type GL_BITMAP is not accepted.

If the selected texture image does not contain four components, the following mappings are applied.
Single-component textures are treated as RGBA buffers with red set to the single-component value, green
set to 0, blue set to O, and alpha set to 1. Two-component textures are treated as RGBA buffers with red
set to the value of component zero, alpha set to the value of component one, and green and blue set to 0.
Finally, three-component textures are treated as RGBA buffers with red set to component zero, green set to
component one, blue set to component two, and apha set to 1.

To determine the required size of pixels, use fglGetTexL evelParameter to determine the dimensions of
the internal texture image, then scale the required number of pixels by the storage required for each pixel,
based on format and type. Be sure to take the pixel storage parameters into account, especialy
GL_PACK_ALIGNMENT.

July 22, 1997

FGLGETTEXIMAGE() UNIX System V FGLGETTEXIMAGE()

NOTES
If an error is generated, no change is made to the contents of pixels.

ERRORS
GL_INVALID_ENUM isgenerated if target, format, or type is not an accepted value.

GL_INVALID_VALUE isgenerated if level islessthan O.

GL_INVALID_VALUE may be generated if level is greater than $log sub 2 max$, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION is generated if fglGetTexlmage is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
folGetTexL evel Parameter with argument GL_TEXTURE_WIDTH
fglGetTexL evelParameter with argument GL_TEXTURE_HEIGHT
folGetTexL evelParameter with argument GL_TEXTURE_BORDER
fglGetTexL evelParameter with argument GL_TEXTURE_COMPONENTS
fglGet with arguments GL_PACK_ALIGNMENT and others

SEE ALSO
fglDrawPixels, fglReadPixels, fglTexEnv, fglTexGen, fglTeximagelD, fglTexImage2D,
fglTexSublmagelD, fglTexSubl mage2D, fgl TexParameter

July 22, 1997 Page 2

FGLGETTEXLEVELPARAMETER() UNIX System V FGLGETTEXLEVELPARAMETER()

NAME
fglGetTexL evelParameterfv, fglGetTexLevelParameteriv — return texture parameter values for a
specific level of detail

FORTRAN SPECIFICATION

SUBROUTINE fglGetTexL evel Par ameter fv(INTEGER* 4 target,
INTEGER*4 level,
INTEGER* 4 pname,
CHARACTER*8 params)

SUBROUTINE fglGet TexL evel Par ameteriv(INTEGER* 4 tar get,
INTEGER*4 level,
INTEGER* 4 pname,
CHARACTER*8 params)

delim $$

PARAMETERS
target Specifies the symbolic name of the target texture, either GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_2D.

level Specifies the level-of-detail number of the desired image. Level 0 is the base image level. Level
n is the nth mipmap reduction image.

pname
Specifies the symbolic name of a texture parameter. GL_TEXTURE_WIDTH,
GL_TEXTURE_HEIGHT, GL_TEXTURE_INTERNAL_FORMAT,
GL_TEXTURE_BORDER, GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_LUMINANCE_SIZE, and GL_TEXTURE_INTENSITY_SIZE are accepted.
params
Returns the requested data.
DESCRIPTION

fglGetTexL evelParameter returns in params texture parameter values for a specific level-of-detail value,
specified as level. target defines the target texture, either GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_2D.

GL_MAX _TEXTURE_SIZE is not really descriptive enough. It has to report the largest square texture
image that can be accommodated with mipmaps and borders, but along skinny texture, or a texture without
mipmaps and borders, may easily fit in texture memory. The proxy targets allow the user to more accu-
rately query whether the GL can accommodate a texture of a given configuration. If the texture cannot be
accommodated, the texture state variables, which may be queried with fglGetTexL evelParameter, are set
to 0. If the texture can be accommodated, the texture state values will be set as they would be set for a
non-proxy target.

pname specifies the texture parameter whose value or values will be returned.
The accepted parameter names are as follows:

GL_TEXTURE_WIDTH
params returns a single value, the width of the texture image. This value includes the border
of the texture image. The initial valueisO.

GL_TEXTURE_HEIGHT

params returns a single value, the height of the texture image. This value includes the border
of the texture image. The initial valueisO.

Page 1 July 22, 1997

FGLGETTEXLEVELPARAMETER() UNIX System V FGLGETTEXLEVELPARAMETER()

GL_TEXTURE_INTERNAL_FORMAT
params returns a single value, the internal format of the texture image.

GL_TEXTURE_BORDER
params returns a single value, the width in pixels of the border of the texture image. The initial
valueisO.

GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE,
GL_TEXTURE_BLUE_SIZE,
GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_LUMINANCE_SIZE,

GL_TEXTURE_INTENSITY_SIZE
The internal storage resolution of an individual component. The resolution chosen by the GL
will be a close match for the resolution requested by the user with the component argument of
fgl TexImagelD or fglTexlmage2D. The initial valueisO.

NOTES
If an error is generated, no change is made to the contents of params.

GL_TEXTURE_INTERNAL_FORMAT isonly available if the GL versionis 1.1 or greater. In version
1.0,use GL_TEXTURE_COMPONENT Sinstead.

GL_PROXY_TEXTURE_1D and GL_PROXY_TEXTURE_2D are only available if the GL version is
1.1 or greater.

ERRORS
GL_INVALID_ENUM isgenerated if target or pname is not an accepted value.

GL_INVALID_VALUE isgenerated if level islessthan O.

GL_INVALID_VALUE may be generated if level is greater than $ log sub 2$ max, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION is generated if fglGetTexL evelPar ameter is executed between the execu-
tion of fglBegin and the corresponding execution of fglEnd.

SEE ALSO
foglGetTexParameter, fglCopyTeximagelD, fglCopyTexImage2D, fglCopyTexSublmagelD,
fglCopyTexSubl mage2D, fol TexEnv, fgl TexGen, fgl TexImagelD, fgl Texlmagez2D,
fgl TexSublmagelD, fgl TexSubl mage2D,
fol TexParameter

July 22, 1997 Page 2

FGLGETTEXPARAMETER() UNIX System V FGLGETTEXPARAMETER()

NAME
folGetTexParameterfv, fglGet T exPar ameteriv — return texture parameter values

FORTRAN SPECIFICATION
SUBROUTINE fglGet T exParameter fv(INTEGER* 4 target,

INTEGER* 4 pname,
CHARACTER*8 params)
SUBROUTINE fglGetTexParameteriv(INTEGER* 4 target,
INTEGER* 4 pname,
CHARACTER*8 params)
delim $$
PARAMETERS
target Specifies the symbolic name of the target texture. GL_TEXTURE_1D and GL_TEXTURE_2D
are accepted.
pname

Specifies the symbolic name of a texture parameter. GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_MIN_FILTER, GL_TEXTURE WRAP S, GL _TEXTURE WRAP_T,
GL_TEXTURE_BORDER_COLOR, GL_TEXTURE_PRIORITY, and
GL_TEXTURE_RESIDENT are accepted.

params
Returns the texture parameters.

DESCRIPTION
fglGetTexParameter returns in params the value or values of the texture parameter specified as pname.
target defines the target texture, either GL_TEXTURE_1D or GL_TEXTURE_2D, to specify one- or
two-dimensional texturing. pname accepts the same symbols as fgl T exPar ameter, with the same interpre-

tations:

GL_TEXTURE_MAG FILTER Returns the single-valued texture magnification filter, a sym-
bolic constant. Theinitial valueisGL_LINEAR.

GL_TEXTURE_MIN_FILTER Returns the single-valued texture minification filter, a symbolic
constant. The initial value is
GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_WRAP_S Returns the single-valued wrapping function for texture coordi-
nate s, a symbolic constant. The initid vaue is
GL_REPEAT.

GL_TEXTURE_WRAP_T Returns the single-valued wrapping function for texture coordi-
nate t, a symbolic constant. The initial value is
GL_REPEAT.

GL_TEXTURE_BORDER_COLOR Returns four integer or floating-point numbers that comprise the
RGBA color of the texture border. Floating-point values are
returned in the range [O, 1]. Integer values are returned as a
linear mapping of the internal floating-point representation such
that 1.0 maps to the most positive representable integer and
-1.0 maps to the most negative representable integer. The ini-
tial valueis (0, O, 0, 0).

GL_TEXTURE_PRIORITY Returns the residence priority of the target texture (or the
named texture bound to it). Theinitia valueis 1. See fglPriori-
tizeTextures.

Page 1 July 22, 1997

FGLGETTEXPARAMETER() UNIX System V FGLGETTEXPARAMETER()

GL_TEXTURE_RESIDENT Returns the residence status of the target texture. If the value
returned in paramsis GL_TRUE, the texture is resident in tex-
ture memory. See fglAreTexturesResident.

NOTES
GL_TEXTURE_PRIORITY and GL_TEXTURE_RESIDENT are only available if the GL version is
1.1 or greater.
If an error is generated, no change is made to the contents of params.

ERRORS
GL_INVALID_ENUM isgenerated if target or pname is not an accepted value.

GL_INVALID_OPERATION isgenerated if fglGetTexParameter is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

SEE ALSO
foglAreT exturesResident, fglPrioritizeT extures, fgl TexParameter

July 22, 1997 Page 2

FGLHINT() UNIX System V FGLHINT()

NAME

fglHint — specify implementation-specific hints

FORTRAN SPECIFICATION

SUBROUTINE fglHint(INTEGER* 4 tar get,
INTEGER*4 mode)

PARAMETERS

target Specifies a symbolic constant indicating the behavior to be controlled. GL_FOG_HINT,
GL_LINE_SMOOTH_HINT, GL_PERSPECTIVE_CORRECTION_HINT,
GL_POINT_SMOOTH_HINT, and GL_POLYGON_SMOOTH_HINT are accepted.

mode Specifies a symbolic constant indicating the desired behavior. GL_FASTEST, GL_NICEST, and
GL_DONT_CARE are accepted.

DESCRIPTION

NOTES

Page 1

Certain aspects of GL behavior, when there is room for interpretation, can be controlled with hints. A hint
is specified with two arguments. target is a symbolic constant indicating the behavior to be controlled, and
mode is another symbolic constant indicating the desired behavior. The initia value for each target is
GL_DONT_CARE. mode can be one of the following:

GL_FASTEST The most efficient option should be chosen.
GL_NICEST The most correct, or highest quality, option should be chosen.
GL_DONT_CARE No preference.

Though the implementation aspects that can be hinted are well defined, the interpretation of the hints
depends on the implementation. The hint aspects that can be specified with target, along with suggested
semantics, are as follows:

GL_FOG_HINT Indicates the accuracy of fog calculation. If per-pixel fog calculation is not
efficiently supported by the GL implementation, hinting GL_DONT_CARE or
GL_FASTEST can result in per-vertex calculation of fog effects.

GL_LINE_SMOOTH_HINT
Indicates the sampling quality of antialiased lines. If a larger filter function is
applied, hinting GL_NICEST can result in more pixel fragments being generated
during rasterization,

GL_PERSPECTIVE_CORRECTION_HINT
Indicates the quality of color and texture coordinate interpolation. |f perspective-
corrected parameter interpolation is not efficiently supported by the GL imple-
mentation, hinting GL_DONT_CARE or GL_FASTEST can result in simple
linear interpolation of colors and/or texture coordinates.

GL_POINT_SMOOTH_HINT
Indicates the sampling quality of antialiased points. If a larger filter function is
applied, hinting GL_NICEST can result in more pixel fragments being generated
during rasterization,

GL_POLYGON_SMOOTH_HINT
Indicates the sampling quality of antialiased polygons. Hinting GL_NICEST can
result in more pixel fragments being generated during rasterization, if a larger
filter function is applied.

The interpretation of hints depends on the implementation. Some implementations ignore fglHint settings.

July 22, 1997

FGLHINT() UNIX System V FGLHINT()

ERRORS
GL_INVALID_ENUM isgenerated if either target or mode is not an accepted value.

GL_INVALID_OPERATION is generated if fglHint is executed between the execution of fglBegin and
the corresponding execution of fglEnd.

July 22, 1997 Page 2

FGLINDEX () UNIX System V FGLINDEX ()

NAME
fgllndexd, fgllndexf, fgllndexi, fgllndexs, fgllndexub, fgllndexdv, fgll ndexfv, fgllndexiv, fgllndexsv,
fgllndexubv — set the current color index

FORTRAN SPECIFICATION
SUBROUTINE fglindexd(REAL*8 ¢)
SUBROUTINE fglindexf(REAL*4 c)
SUBROUTINE fgllndexi(INTEGER*4 ¢)
SUBROUTINE fglindexs(INTEGER*2 ¢)
SUBROUTINE fgllndexub(INTEGER*1 ¢)

PARAMETERS
¢ Specifiesthe new value for the current color index.

FORTRAN SPECIFICATION
SUBROUTINE fgll ndexdv(CHARACTER*8 ¢)
SUBROUTINE fgll ndexfv(CHARACTER*8 c)
SUBROUTINE fgllndexiv(CHARACTER*8 ¢)
SUBROUTINE fgllndexsv(CHARACTER*8 ¢)
SUBROUTINE fgll ndexubv(CHARACTER* 256 ¢)

PARAMETERS
c Specifies a pointer to a one-element array that contains the new value for the current color index.

DESCRIPTION
fgllndex updates the current (single-valued) color index. It takes one argument, the new value for the
current color index.

The current index is stored as a floating-point value. Integer values are converted directly to floating-point
values, with no specia mapping. Theinitial valueis 1.

Index values outside the representable range of the color index buffer are not clamped. However, before
an index is dithered (if enabled) and written to the frame buffer, it is converted to fixed-point format. Any
bits in the integer portion of the resulting fixed-point value that do not correspond to bits in the frame
buffer are masked out.

NOTES
fgllndexub and fgllndexubv are available only if the GL version is 1.1 or greater.

The current index can be updated at any time. In particular, fglindex can be called between a call to fgiBe-
gin and the corresponding call to fglEnd.

ASSOCIATED GETS
fglGet with argument GL_CURRENT_INDEX

SEE ALSO
fglColor, fgllndexPointer

Page 1 July 22, 1997

FGLINDEXMASK () UNIX System V FGLINDEXMASK ()

NAME
fgllndexM ask — control the writing of individual bits in the color index buffers

FORTRAN SPECIFICATION
SUBROUTINE fglindexMask(INTEGER*4 mask)

delim $$

PARAMETERS
mask Specifies a bit mask to enable and disable the writing of individual bits in the color index buffers.
Initially, the mask isall 1's.

DESCRIPTION
fgllndexM ask controls the writing of individual bits in the color index buffers. The least significant n
bits of mask, where n is the number of bits in a color index buffer, specify a mask. Where a 1 (one)
appears in the mask, it's possible to write to the corresponding bit in the color index buffer (or buffers).
Where a0 (zero) appears, the corresponding bit is write-protected.

This mask is used only in color index mode, and it affects only the buffers currently selected for writing
(see fglDrawBuffer). Initialy, al bits are enabled for writing.

ERRORS
GL_INVALID_OPERATION is generated if fgllndexMask is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_INDEX_WRITEMASK

SEE ALSO
fglColor M ask, fglDepthM ask, fglDrawBuffer, fgll ndex, fgll ndexPointer, fglStencilM ask

Page 1 July 22, 1997

FGLINDEXPOINTER() UNIX System V FGLINDEXPOINTER()

NAME

fgllndexPointer — define an array of color indexes

FORTRAN SPECIFICATION

SUBROUTINE fgllndexPointer (INTEGER* 4 type,
INTEGER*4 stride,
CHARACTER*8 pointer)

delim $$

PARAMETERS

type Specifies the data type of each color index in the array. Symbolic constants
GL_UNSIGNED_BYTE, GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE are
accepted.

stride Specifies the byte offset between consecutive color indexes. If stride is O (the initial value), the
color indexes are understood to be tightly packed in the array.

pointer Specifies a pointer to the first index in the array.

DESCRIPTION

NOTES

fgllndexPointer specifies the location and data format of an array of color indexes to use when rendering.
type specifies the data type of each color index and stride gives the byte stride from one color index to the
next allowing vertexes and attributes to be packed into a single array or stored in separate arrays. (Single-
array storage may be more efficient on some implementations; see fgll nterleavedArrays.)

type, stride, and pointer are saved as client-side state.

The color index array isinitially disabled. To enable and disable the array, call fglEnableClientState and
fglDisableClientState with the argument GL_INDEX_ARRAY . If enabled, the color index array is used
when fglDrawArrays, fglDrawElements or fglArrayElement is called.

Use fglDrawArrays to construct a sequence of primitives (all of the same type) from prespecified vertex
and vertex attribute arrays. Use fglArrayElement to specify primitives by indexing vertexes and vertex
attributes and fglDrawElements to construct a sequence of primitives by indexing vertexes and vertex
attributes.

fgllndexPointer isavailable only if the GL versionis 1.1 or greater.

The color index array isinitially disabled, and it isn’'t accessed when fglArrayElement, fglDrawElements
or fglDrawArraysiscalled.

Execution of fgllndexPointer is not allowed between fglBegin and the corresponding fglEnd, but an error
may or may not be generated. If an error is not generated, the operation is undefined.

fgllndexPointer istypicaly implemented on the client side.

Since the color index array parameters are client-side state, they are not saved or restored by fglPushAt-
trib and fglPopAttrib. Use fglPushClientAttrib and fglPopClientAttrib instead.

ERRORS

GL_INVALID_ENUM isgenerated if typeisnot an accepted value.
GL_INVALID_VALUE isgenerated if stride is negative.

ASSOCIATED GETS

Page 1

fgll sEnabled with argument GL_INDEX_ARRAY

fglGet with argument GL_INDEX_ARRAY_TYPE

fglGet with argument GL_INDEX_ARRAY_STRIDE
fglGetPointerv with argument GL_INDEX_ARRAY_POINTER

July 22, 1997

FGLINDEXPOINTER() UNIX System V FGLINDEXPOINTER()

SEE ALSO
fglArrayElement, fglColorPointer, fglDrawArrays, fglDrawElements, fglEdgeFlagPointer, fglEn-
able, fglGetPointerv, fgllnterleavedArrays, fgiINormalPointer, fglPopClientAttrib, fglPushClientAt-
trib, fglTexCoordPointer, fglVertexPointer

July 22, 1997 Page 2

FGLINITNAMES() UNIX System V FGLINITNAMES()

NAME
fgll nitNames — initialize the name stack

FORTRAN SPECIFICATION
SUBROUTINE fglI nitNames()

DESCRIPTION
The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers. fgll nitNames causes the name stack to be ini-
tialized to its default empty state.

The name stack is aways empty while the render mode isnot GL_SELECT. Callsto fgllnitNames while
the render modeisnot GL_SEL ECT areignored.

ERRORS
GL_INVALID_OPERATION is generated if fgllnitNames is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_NAME_STACK_DEPTH
fglGet with argument GL_MAX_NAME_STACK_DEPTH

SEE ALSO
fglL oadName, fglPushName, fglRender M ode, fgl SelectBuffer

Page 1 July 22, 1997

FGLINTERLEAVEDARRAYS() UNIX System V FGLINTERLEAVEDARRAY S()

NAME

fgllnterleavedArrays — simultaneously specify and enable several interleaved arrays

FORTRAN SPECIFICATION

SUBROUTINE fgllnterleavedArrays(INTEGER* 4 format,
INTEGER*4 stride,
CHARACTER*8 pointer)

PARAMETERS

format Specifies the type of array to enable. Symbolic constants GL_V2F, GL_V3F, GL_C4UB_V2F,
GL_C4UB_V3F, GL_C3F V3F, GL_N3F_V3F, GL_C4F N3F_V3F, GL_T2F V3F,
GL_T4F_V4F, GL_T2F _C4UB_V3F, GL_T2F _C3F_V3F, GL_T2F N3F_V3F,
GL_T2F C4F_N3F_V3F, and GL_T4F_C4F_N3F_V4F are accepted.

stride Specifies the offset in bytes between each aggregate array element.

DESCRIPTION

NOTES

fgllnterleavedArrays lets you specify and enable individual color, normal, texture and vertex arrays
whose elements are part of a larger aggregate array element. For some implementations, this is more
efficient than specifying the arrays seperately.

If stride is O, the aggregate elements are stored consecutively. Otherwise, stride bytes occur between the
beginning of one aggregate array element and the beginning of the next aggregate array element.

format serves as a’'key’ describing the extraction of individual arrays from the aggregate array. If format
contains a T, then texture coordinates are extracted from the interleaved array. If C is present, color values
are extracted. If N is present, normal coordinates are extracted. Vertex coordinates are always extracted.

The digits 2, 3, and 4 denote how many values are extracted. F indicates that values are extracted as
floating-point values. Colors may aso be extracted as 4 unsigned bytes if 4UB follows the C. If acolor is
extracted as 4 unsigned bytes, the vertex array element which follows is located at the first possible
floating-point aligned address.

fgllnterleavedArraysisavailable only if the GL versionis 1.1 or greater.

If fgllnterleavedArrays is caled while compiling a display list, it is not compiled into the list, and it is
executed immediately.

Execution of fgllnterleavedArrays is not alowed between the execution of fglBegin and the correspond-
ing execution of fglEnd, but an error may or may not be generated. If no error is generated, the operation is
undefined.

fgllnterleavedArrays istypically implemented on the client side.

Vertex array parameters are client-side state and are therefore not saved or restored by fglPushAttrib and
fglPopAttrib. UsefglPushClientAttrib and fglPopClientAttrib instead.

ERRORS

GL_INVALID_ENUM isgenerated if format is not an accepted value.
GL_INVALID_VALUE isgenerated if stride is negative.

SEE ALSO

Page 1

fglArrayElement, fglColorPointer, fglDrawArrays, fglDrawElements, fglEdgeFlagPointer, fglEna-
bleClientState, fglGetPointer, fgllndexPointer, fglNormalPointer, fglTexCoordPointer, fglVertex-
Pointer

July 22, 1997

FGLISENABLED()

NAME

UNIX System V FGLISENABLED()

fgll sEnabled — test whether a capability is enabled

FORTRAN SPECIFICATION

LOGICAL*1 fgllsEnabled(INTEGER*4 cap)

PARAMETERS

cap Specifies asymbolic constant indicating a GL capability.

DESCRIPTION

fgllsEnabled returns GL_TRUE if cap is an enabled capability and returns GL_FAL SE otherwise. Ini-
tially all capabilities except GL_DITHER are disabled; GL_DITHER isinitially enabled.

The following capabilities are accepted for cap:

Constant

See

GL_ALPHA_TEST
GL_AUTO_NORMAL
GL_BLEND

GL_CLIP_PLANE;
GL_COLOR_ARRAY
GL_COLOR_LOGIC_OP
GL_COLOR_MATERIAL
GL_CULL_FACE
GL_DEPTH_TEST

GL_DITHER
GL_EDGE_FLAG_ARRAY
GL_FOG

GL_INDEX_ARRAY
GL_INDEX_LOGIC_OP
GL_LIGHTI

GL_LIGHTING
GL_LINE_SMOOTH
GL_LINE_STIPPLE

GL_MAP1 COLOR 4

GL_MAP2_ TEXTURE_COORD 2
GL_MAP2_ TEXTURE_COORD 3
GL_MAP2_TEXTURE_COORD 4
GL_MAP2 VERTEX_3
GL_MAP2 VERTEX_ 4
GL_NORMAL_ARRAY
GL_NORMALIZE
GL_POINT_SMOOTH
GL_POLYGON_SMOOTH
GL_POLYGON_OFFSET_FILL
GL_POLYGON_OFFSET_LINE
GL_POLYGON_OFFSET_POINT
GL_POLYGON_STIPPLE
GL_SCISSOR_TEST
GL_STENCIL_TEST

Page 1

fglAlphaFunc
fglEvalCoord
fglBlendFunc, fglL ogicOp
folClipPlane

fglColor Pointer

fglL ogicOp
fglColorMaterial
fglCullFace
fglDepthFunc, fglDepthRange
fglEnable
fglEdgeFlagPointer
foglFog

fgllndexPointer

fglL ogicOp
foglLightModél, fglLight
fglMaterial, fglLightM odel, fglLight
foglLineWidth
fglLineStipple

fglMap1, fglMap2
fglMap2

fglMap2

fglMap2

fglMap2

fglMap2
fglNormalPointer
fgINormal

fglPaointSize

fglPolygonM ode
fglPolygonOffset
fglPolygonOffset
fglPolygonOffset
fglPolygonStipple

fgl Scissor

fglStencilFunc, fglStencilOp

July 22, 1997

FGLISENABLED() UNIX System V FGLISENABLED ()

GL_TEXTURE_1D fgl TexlmagelD
GL_TEXTURE_2D fgl Texlmage2D
GL_TEXTURE_COORD_ARRAY fglTexCoordPointer
GL_TEXTURE_GEN_Q foglTexGen
GL_TEXTURE_GEN_R foglTexGen
GL_TEXTURE_GEN_S foglTexGen
GL_TEXTURE_GEN_T foglTexGen
GL_VERTEX_ARRAY fglVertexPointer
NOTES
If an error is generated, fgll sEnabled returns 0.
GL_COLOR_LOGIC_OP, GL_COLOR_ARRAY, GL_EDGE_FLAG_ARRAY,
GL_INDEX_ARRAY, GL_INDEX_LOGIC_OP, GL_NORMAL_ARRAY,
GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE,

GL_POLYGON_OFFSET_POINT, GL_TEXTURE_COORD_ARRAY, and GL_VERTEX_ARRAY
areonly available if the GL versionis 1.1 or greater

ERRORS
GL_INVALID_ENUM isgenerated if cap is not an accepted value.

GL_INVALID_OPERATION is generated if fgllsEnabled is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

SEE ALSO
fglEnable, fglEnableClientState

July 22, 1997 Page 2

FGLISLIST() UNIX System V FGLISLIST()

NAME
fgllsList — determine if a name corresponds to a display-list

FORTRAN SPECIFICATION
LOGICAL*1 fgllsList(INTEGER*4 list)

PARAMETERS

list Specifies a potentia display-list name.
DESCRIPTION

follsList returns GL_TRUE if list isthe name of adisplay list and returns GL_FAL SE otherwise.
ERRORS

GL_INVALID_OPERATION isgenerated if fgllsList is executed between the execution of fglBegin and
the corresponding execution of fglEnd.

SEE ALSO
foglCallList, fglCallLists, fglDeletel ists, fglGenLists, fglNewL ist

Page 1 July 22, 1997

FGLISTEXTURE() UNIX System V FGLISTEXTURE()

NAME
fgll sTexture — determine if a name corresponds to atexture

FORTRAN SPECIFICATION
LOGICAL*1 fgllsTexture(INTEGER*4 texture)

PARAMETERS
texture Specifies avalue that may be the name of atexture.

DESCRIPTION
fgllsTexture returns GL_TRUE if texture is currently the name of a texture. If texture is zero, or is a
non-zero value that is not currently the name of a texture, or if an error occurs, fgllsTexture returns

GL_FALSE.
NOTES

follsTextureisavailable only if the GL versionis 1.1 or greater.
ERRORS

GL_INVALID_OPERATION isgenerated if fgll sT exture is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

SEE ALSO
fglBindTexture, fglCopyTexImagelD, fglCopyTexlmage2D, fglDeleteTextures, fglGenTextures,
fglGet, fglGetTexPar ameter, fglTexl magelD, fglTexl mage2D,
fgl TexParameter

Page 1 July 22, 1997

FGLLIGHT() UNIX System V FGLLIGHT()

NAME
folLightf, fglLighti, fglLightfv, fglLightiv — set light source parameters

FORTRAN SPECIFICATION
SUBROUTINE fglLightf(INTEGER* 4 light,

INTEGER* 4 pname,
REAL*4 param)
SUBROUTINE fglLighti(INTEGER*4 light,
INTEGER* 4 pname,
INTEGER*4 param)
delim $$
PARAMETERS

light Specifiesalight. The number of lights depends on the implementation, but at least eight lights are
supported. They are identified by symbolic names of the form GL_LIGHTSiSwhere0< $i $<
GL_MAX_LIGHTS.

pname Specifies a singlevalued light source parameter for lightt GL_SPOT_EXPONENT,
GL_SPOT_CUTOFF, GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION,
and GL_QUADRATIC_ATTENUATION are accepted.

param Specifies the value that parameter pname of light source light will be set to.

FORTRAN SPECIFICATION
SUBROUTINE fglLightfv(INTEGER*4 light,
INTEGER*4 pname,
CHARACTER*8 params)
SUBROUTINE fglLightiv(INTEGER*4 light,
INTEGER*4 pnarme,
CHARACTER*8 params)

PARAMETERS
light Specifiesalight. The number of lights depends on the implementation, but at least eight lights are
supported. They are identified by symbolic names of the form GL_LIGHTSiwhere0< $i $<
GL_MAX_LIGHTS.

pname Specifies alight source parameter for light. GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,
GL_POSITION, GL_SPOT_CUTOFF, GL_SPOT_DIRECTION, GL_SPOT_EXPONENT,
GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION are accepted.

params Specifies a pointer to the value or values that parameter pname of light source light will be set to.

DESCRIPTION
fglLight sets the values of individual light source parameters. light names the light and is a symbolic name
of theform GL_LIGHTSi, where 0 <i < GL_MAX_LIGHTS. pname specifies one of ten light source
parameters, again by symbolic name. paramsis either a single value or a pointer to an array that contains
the new values.

To enable and disable lighting calculation, call fglEnable and fglDisable with argument GL_LIGHTING.
Lighting is initialy disabled. When it is enabled, light sources that are enabled contribute to the lighting
calculation. Light source i is enabled and disabled using fglEnable and fglDisable with argument
GL_LIGHTSi$.

Theten light parameters are as follows:

Page 1 July 22, 1997

FGLLIGHT()

GL_AMBIENT

GL_DIFFUSE

GL_SPECULAR

GL_POSITION

UNIX System V FGLLIGHT()

params contains four integer or floating-point values that specify the ambient
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive representable value maps to 1.0, and the most negative representable
value maps to -1.0. Floating-point values are mapped directly. Neither integer
nor floating-point values are clamped. The initial ambient light intensity is (0, O,
0, 1).

params contains four integer or floating-point values that specify the diffuse
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive representable value maps to 1.0, and the most negative representable
value maps to —1.0. Floating-point values are mapped directly. Neither integer
nor floating-point values are clamped. Theinitial value for GL_LIGHTOis (1, 1,
1, 1); for other lights, theinitial valueis (0, 0, 0, 0).

params contains four integer or floating-point values that specify the specular
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive representable value maps to 1.0, and the most negative representable
value maps to —1.0. Floating-point values are mapped directly. Neither integer
nor floating-point values are clamped. Theinitial value for GL_LIGHTOis (1, 1,
1, 1); for other lights, the initial valueis (0, O, 0, 0).

params contains four integer or floating-point values that specify the position of
the light in homogeneous object coordinates. Both integer and floating-point
values are mapped directly. Neither integer nor floating-point values are clamped.

The position is transformed by the modelview matrix when fglLight is called (just
asif it were a point), and it is stored in eye coordinates. If the w component of
the position is 0, the light is treated as a directional source. Diffuse and specular
lighting calculations take the light's direction, but not its actual position, into
account, and attenuation is disabled. Otherwise, diffuse and specular lighting cal-
culations are based on the actual location of the light in eye coordinates, and
attenuation is enabled. The initial position is (0, O, 1, 0); thus, the initia light
source is directional, parallel to, and in the direction of the $-z$ axis.

GL_SPOT_DIRECTION

params contains three integer or floating-point values that specify the direction of
the light in homogeneous object coordinates. Both integer and floating-point
values are mapped directly. Neither integer nor floating-point values are clamped.

The spot direction is transformed by the inverse of the modelview matrix when
fglLight iscalled (just as if it were a normal), and it is stored in eye coordinates.
It is significant only when GL_SPOT_CUTOFF is not 180, which it is initialy.
Theinitial directionis (0, 0, -1).

GL_SPOT_EXPONENT

GL_SPOT_CUTOFF

July 22, 1997

params is a single integer or floating-point value that specifies the intensity distri-
bution of the light. Integer and floating-point values are mapped directly. Only
valuesin the range [0,128] are accepted.

Effective light intensity is attenuated by the cosine of the angle between the direc-
tion of the light and the direction from the light to the vertex being lighted, raised
to the power of the spot exponent. Thus, higher spot exponents result in a more
focused light source, regardless of the spot cutoff angle (see
GL_SPOT_CUTOFF, next paragraph). The initial spot exponent is O, resulting
inuniform light distribution.

params is a single integer or floating-point value that specifies the maximum
spread angle of a light source. Integer and floating-point values are mapped

Page 2

FGLLIGHT()

UNIX System V FGLLIGHT()

directly. Only values in the range [0,90] and the special value 180 are accepted.
If the angle between the direction of the light and the direction from the light to
the vertex being lighted is greater than the spot cutoff angle, the light is com-
pletely masked. Otherwise, itsintensity is controlled by the spot exponent and the
attenuation factors. The initia spot cutoff is 180, resulting in uniform light distri-
bution.

GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

NOTES

params is a single integer or floating-point value that specifies one of the three
light attenuation factors. Integer and floating-point values are mapped directly.
Only nonnegative values are accepted. If the light is positional, rather than direc-
tional, itsintensity is attenuated by the reciprocal of the sum of the constant factor,
the linear factor times the distance between the light and the vertex being lighted,
and the quadratic factor times the square of the same distance. The initial attenua
tion factors are (1, O, 0), resulting in no attenuation.

Itisawaysthecasethat GL_LIGHTSi=GL_LIGHTO+ i.

ERRORS

GL_INVALID_ENUM isgenerated if either light or pname is not an accepted value.

GL_INVALID_VALUE is generated if a spot exponent value is specified outside the range [0,128], or if
spot cutoff is specified outside the range [0,90] (except for the special value 180), or if a negative attenua-

tion factor is specified.

GL_INVALID_OPERATION isgenerated if fglLight is executed between the execution of fglBegin and
the corresponding execution of fglEnd.

ASSOCIATED GETS
foglGetLight

fgllsEnabled with argument GL_LIGHTING

SEE ALSO

fglColorMaterial, fglLightM odel, fgiM aterial

Page 3

July 22, 1997

FGLLIGHTMODEL () UNIX System V FGLLIGHTMODEL ()

NAME

foglLightM odelf, fglLightM odeli, fglLightM odelfv, fglLightM odeliv — set the lighting model parameters

FORTRAN SPECIFICATION
SUBROUTINE fglL ightM odelf(INTEGER* 4 pname,

REAL*4 param)

SUBROUTINE fglLightM odeli(INTEGER* 4 pname,

delim $$
PARAMETERS

INTEGER*4 param)

pname Specifies a single-valued lighting model parameter. GL_LIGHT _MODEL_LOCAL_VIEWER
and GL_LIGHT_MODEL_TWO_SIDE are accepted.

param Specifies the value that param will be set to.

FORTRAN SPECIFICATION
SUBROUTINE fglLightM odelfv(INTEGER*4 pname,

CHARACTER*8 params)

SUBROUTINE fglLightM odeliv(INTEGER* 4 pname,

PARAMETERS

CHARACTER*8 params)

pname Specifies a lighting model parameter. GL_LIGHT_MODEL_AMBIENT,

GL_LIGHT_MODEL_LOCAL_VIEWER, and GL_LIGHT_MODEL_TWO_SIDE are
accepted.

params Specifies a pointer to the value or values that params will be set to.

DESCRIPTION

fglLightModel sets the lighting model parameter. pname names a parameter and params gives the new
value. There are three lighting model parameters:

GL_LIGHT_MODEL_AMBIENT

params contains four integer or floating-point values that specify the ambient RGBA intensity
of the entire scene. Integer values are mapped linearly such that the most positive represent-
able value mapsto 1.0, and the most negative representable value mapsto —1.0. Floating-point
values are mapped directly. Neither integer nor floating-point values are clamped. The initial
ambient scene intensity is (0.2, 0.2, 0.2, 1.0).

GL_LIGHT_MODEL_LOCAL_VIEWER

params is a single integer or floating-point value that specifies how specular reflection angles
are computed. If paramsis 0 (or 0.0), specular reflection angles take the view direction to be
parallel to and in the direction of the -z axis, regardless of the location of the vertex in eye
coordinates. Otherwise, specular reflections are computed from the origin of the eye coordi-
nate system. Theinitial valueisO.

GL_LIGHT_MODEL_TWO_SIDE

Page 1

paramsisasingleinteger or floating-point value that specifies whether one- or two-sided light-
ing calculations are done for polygons. It has no effect on the lighting calculations for points,
lines, or bitmaps. If params is O (or 0.0), one-sided lighting is specified, and only the front
material parameters are used in the lighting equation. Otherwise, two-sided lighting is
specified. In this case, vertices of back-facing polygons are lighted using the back material
parameters, and have their normals reversed before the lighting equation is evaluated. Vertices
of front-facing polygons are always lighted using the front material parameters, with no
change to their normals. The initial value isO.

July 22, 1997

FGLLIGHTMODEL () UNIX System V FGLLIGHTMODEL ()

In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity, the product of
the material ambient reflectance and the lighting model full-scene ambient intensity, and the contribution of
each enabled light source. Each light source contributes the sum of three terms. ambient, diffuse, and
specular. The ambient light source contribution is the product of the material ambient reflectance and the
light's ambient intensity. The diffuse light source contribution is the product of the material diffuse
reflectance, the light's diffuse intensity, and the dot product of the vertex’s normal with the normalized
vector from the vertex to the light source. The specular light source contribution is the product of the
material specular reflectance, the light’s specular intensity, and the dot product of the normalized vertex-
to-eye and vertex-to-light vectors, raised to the power of the shininess of the material. All three light
source contributions are attenuated equally based on the distance from the vertex to the light source and on
light source direction, spread exponent, and spread cutoff angle. All dot products are replaced with O if
they evaluate to a negative value.

The apha component of the resulting lighted color is set to the alpha value of the material diffuse
reflectance.

In color index mode, the value of the lighted index of a vertex ranges from the ambient to the specular
values passed to fglM aterial using GL_COLOR_INDEXES. Diffuse and specular coefficients, computed
with a (.30, .59, .11) weighting of the lights' colors, the shininess of the material, and the same reflection
and attenuation equations as in the RGBA case, determine how much above ambient the resulting index is.

ERRORS
GL_INVALID_ENUM isgenerated if pnameis not an accepted value.

GL_INVALID_OPERATION isgenerated if fglLightM odel is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_LIGHT_MODEL_AMBIENT
fglGet with argument GL_LIGHT_MODEL_L OCAL_VIEWER
fglGet with argument GL_LIGHT_MODEL_TWO_SIDE
fgll sEnabled with argument GL_LIGHTING

SEE ALSO
fglLight, fgiM aterial

July 22, 1997 Page 2

FGLLINESTIPPLE() UNIX System V FGLLINESTIPPLE()

NAME
fglLineStipple — specify the line stipple pattern

FORTRAN SPECIFICATION
SUBROUTINE fglLineStipple(INTEGER* 4 factor,
INTEGER* 2 pattern)

delim $$

PARAMETERS
factor Specifiesamultiplier for each bit in the line stipple pattern. If factor is 3, for example, each bit in
the pattern is used three times before the next bit in the pattern is used. factor is clamped to the
range [1, 256] and defaults to 1.

pattern Specifies a 16-bit integer whose bit pattern determines which fragments of a line will be drawn
when the lineisrasterized. Bit zero is used first; the default patternisall 1's.

DESCRIPTION
Line stippling masks out certain fragments produced by rasterization; those fragments will not be drawn.
The masking is achieved by using three parameters: the 16-bit line stipple pattern pattern, the repeat count
factor, and an integer stipple counter s.

Counter s is reset to O whenever fglBegin is called, and before each line segment of a
fglBegin(GL_LINES)/fglEnd sequence is generated. It isincremented after each fragment of a unit width
aliased line segment is generated, or after each i fragments of an i width line segment are generated.
The i fragments associated with count s are masked out if

pattern bit $(s"/~ "factor") “roman mod~ 16$

is 0, otherwise these fragments are sent to the frame buffer. Bit zero of pattern isthe least significant bit.

Antidliased lines are treated as a sequence of $1 times width$ rectangles for purposes of stippling.
Whether rectagle s is rasterized or not depends on the fragment rule described for aliased lines, counting
rectangles rather than groups of fragments.

To enable and disable line stippling, call fglEnable and fglDisable with argument GL_LINE_STIPPLE.
When enabled, the line stipple pattern is applied as described above. When disabled, it is asif the pattern
wereall 1's. Initialy, line stippling is disabled.

ERRORS
GL_INVALID_OPERATION isgenerated if fglLineStippleis executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_LINE_STIPPLE_PATTERN
fglGet with argument GL_LINE_STIPPLE_REPEAT
fgll sEnabled with argument GL_LINE_STIPPLE

SEE ALSO
foglLineéWidth, fglPolygonStipple

Page 1 July 22, 1997

FGLLINEWIDTH() UNIX System V FGLLINEWIDTH()

NAME

foglLineWidth — specify the width of rasterized lines

FORTRAN SPECIFICATION

SUBROUTINE fglLineWidth(REAL*4 width)

delim $$

PARAMETERS

width Specifiesthe width of rasterized lines. Theinitial valueis 1.

DESCRIPTION

NOTES

fglLineWidth specifies the rasterized width of both aliased and antialiased lines. Using a line width other
than 1 has different effects, depending on whether line antialiasing is enabled. To enable and disable line
antialiasing, call fglEnable and fglDisable with argument GL_LINE_SMOOTH. Line antidliasing is ini-
tially disabled.

If line antialiasing is disabled, the actual width is determined by rounding the supplied width to the nearest
integer. (If the rounding resultsin the value O, itisasif the line width were 1.) If

| DELTA x |>=|DELTA Y|,

i pixelsare filled in each column that is rasterized, where i is the rounded value of width. Otherwise, i pix-
elsarefilled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel sguare that intersects the
region lying within the rectangle having width equal to the current line width, length equal to the actual
length of the line, and centered on the mathematical line segment. The coverage value for each fragment is
the window coordinate area of the intersection of the rectangular region with the corresponding pixel
square. Thisvalueissaved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is requested, the
nearest supported width is used. Only width 1 is guaranteed to be supported; others depend on the imple-
mentation. To query the range of supported widths and the size difference between supported widths
within the range, «cdl fglGet with arguments GL_LINE WIDTH RANGE and
GL_LINE_WIDTH_GRANULARITY.

The line width specified by fglLineWidth is aways returned when GL_LINE_WIDTH is queried.
Clamping and rounding for aliased and antiaiased lines have no effect on the specified value.

Nonantialiased line width may be clamped to an implementation-dependent maximum. Although this max-
imum cannot be queried, it must be no less than the maximum value for antialiased lines, rounded to the
nearest integer value.

ERRORS

GL_INVALID_VALUE isgenerated if width islessthan or equal to 0.

GL_INVALID_OPERATION is generated if fglLineWidth is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGet with argument GL_LINE_WIDTH

fglGet with argument GL_LINE_WIDTH_RANGE

fglGet with argument GL_LINE_WIDTH_GRANULARITY
fgll sEnabled with argument GL_LINE_SMOOTH

SEE ALSO

Page 1

fglEnable

July 22, 1997

FGLLISTBASE() UNIX System V FGLLISTBASE()

NAME
fglListBase — set the display-list base for fglCallLists

FORTRAN SPECIFICATION
SUBROUTINE fglL istBase(INTEGER*4 base)

PARAMETERS
base Specifies an integer offset that will be added to fglCallLists offsets to generate display-list names.
Theinitial valueisO.

DESCRIPTION
fglCallL ists specifies an array of offsets. Display-list names are generated by adding base to each offset.
Names that reference valid display lists are executed; the others are ignored.

ERRORS
GL_INVALID_OPERATION is generated if fglListBase is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_LIST_BASE

SEE ALSO
fglCallLists

Page 1 July 22, 1997

FGLLOADIDENTITY () UNIX System V FGLLOADIDENTITY ()

NAME
fglL oadl dentity — replace the current matrix with the identity matrix

FORTRAN SPECIFICATION
SUBROUTINE fglL oadl dentity()

DESCRIPTION
fglL oadl dentity replaces the current matrix with the identity matrix. It is semantically equivalent to cal-
ling fglL oadM atrix with the identity matrix

left (down 20{ ™ matrix {
ccol { 1 above 0 above 0 above 0™ }
ccol { 0 above 1 above 0 above 0™ }
ccol { 0 above 0 above 1 above 0™}
ccol { 0 above O above Oabovel} } } ~right)

but in some cases it is more efficient.

ERRORS
GL_INVALID_OPERATION is generated if fglLoadldentity is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE
fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX

SEE ALSO
fglLoadMatrix, fgiM atrixM ode, fgIM ultM atrix, fglPushM atrix

Page 1 July 22, 1997

FGLLOADMATRIX() UNIX System V FGLLOADMATRIX()

NAME

fglLoadM atrixd, fglL oadM atrixf — replace the current matrix with the specified matrix

FORTRAN SPECIFICATION

SUBROUTINE fglL oadM atrixd(CHARACTER*8 m)
SUBROUTINE fglL oadM atrixf(CHARACTER*8 m)

delim $$

PARAMETERS

m Specifies a pointer to 16 consecutive values, which are used as the elements of a $4 times 4% column-
major matrix.

DESCRIPTION

NOTES

fglLoadM atrix replaces the current matrix with the one whose elements are specified by m. The current
matriX is the projection matrix, modelview matrix, or texture matrix, depending on the current matrix mode
(seefglMatrixM ode).

The current matrix, M, defines a transformation of coordinates. For instance, assume M refers to the
modelview matrix. If $v "=" (v[Q], v[1], v[2], v[3])$ is the set of object coordinates of a vertex, and m
points to an array of $16% single- or double-precision floating-point values $m[0], m[1],. . .,m[15]$, then
the modelview transformation $M (v)$ does the following:

down 130
{M(v) " ="{{ left (matrix {
ccol { "m[0] above m[1] above m[2] above m[3] "}
ccol { "m[4] above m[5] above m[6] above m[7] "}
ccol { "m[8] above m[9] above m[10] above m[11] "}
ccol { "m[12]" above m[13]~ above m[14]" above m[15]"} } right) } ™ times ™ {left (matrix { ccol {
“v[0]™ above "v[1]” above "v[2]" above"v[3]"} } right)} }}

Where '$times$’ denotes matrix multiplication.
Projection and texture transformations are similarly defined.

While the elements of the matrix may be specified with single or double precision, the GL implementation
may store or operate on these valuesin less than single precision.

ERRORS

GL_INVALID_OPERATION is generated if fglLoadMatrix is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGet with argument GL_MATRIX_MODE

fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX

SEE ALSO

Page 1

fglL oadl dentity, fglM atrixMode, fglMultMatrix, fglPushMatrix

July 22, 1997

FGLLOADNAME() UNIX System V FGLLOADNAME()

NAME
fglL oadName - load a name onto the name stack

FORTRAN SPECIFICATION
SUBROUTINE fglL oadName(INTEGER*4 name)

PARAMETERS
name Specifies a name that will replace the top value on the name stack.

DESCRIPTION
The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers. fglL oadName causes name to replace the
value on the top of the name stack, which isinitially empty.

The name stack is always empty while the render modeisnot GL_SEL ECT. Callsto fglL oadName while
the render modeisnot GL_SELECT areignored.

ERRORS
GL_INVALID_OPERATION isgenerated if fglL oadName is called while the name stack is empty.

GL_INVALID_OPERATION is generated if fglL oadName is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_NAME_STACK_DEPTH
fglGet with argument GL_MAX_NAME_STACK_DEPTH

SEE ALSO
fgllnitNames, fglPushName, fglRender M ode, fgl SelectBuffer

Page 1 July 22, 1997

FGLLOGICOP() UNIX System V FGLLOGICOP()

NAME
fglL ogicOp — specify alogical pixel operation for color index rendering

FORTRAN SPECIFICATION
SUBROUTINE fglL ogicOp(INTEGER* 4 opcode)

PARAMETERS
opcode Specifies a symbolic constant that selects alogical operation. The following symbols are accepted:
GL_CLEAR, GL_SET, GL_COPY, GL_COPY_INVERTED, GL_NOOP, GL_INVERT,
GL_AND, GL_NAND, GL_OR, GL_NOR, GL_XOR, GL_EQUIV, GL_AND_REVERSE,
GL_AND_INVERTED, GL_OR_REVERSE, and GL_OR_INVERTED. The initiad value is
GL_COPY.

DESCRIPTION
fglL ogicOp specifies a logical operation that, when enabled, is applied between the incoming color index
or RGBA color and the color index or RGBA color at the corresponding location in the frame buffer. To
enable or disable the logical operation, call fglEnable and fgIDisable using the symbolic constant
GL_COLOR_LOGIC_OP for RGBA mode or GL_INDEX_LOGIC_OP for color index mode. The ini-
tial valueis disabled for both operations.

opcode resulting value
GL _CLEAR 0
GL_SET 1
GL_COPY s
GL_COPY_INVERTED S
GL_NOOP d
GL_INVERT ~d
GL_AND s&d
GL_NAND “(s& d)
GL OR s|d
GL_NOR “(s]d)
GL_XOR s™d
GL_EQUIV “(s”d)
GL_AND_REVERSE s& 7d
GL_AND_INVERTED "s&d
GL_OR_REVERSE s|~d
GL_OR_INVERTED “s|d

opcode is a symbolic constant chosen from the list above. In the explanation of the logical operations, s
represents the incoming color index and d represents the index in the frame buffer. Standard C-language
operators are used. As these bitwise operators suggest, the logical operation is applied independently to
each bit pair of the source and destination indices or colors.

NOTES
Color index logical operations are aways supported. RGBA logical operations are supported only if the GL
versionis 1.1 or greater.

When more than one RGBA color or index buffer is enabled for drawing, logical operations are performed
separately for each enabled buffer, using for the destination value the contents of that buffer (see
fglDrawBuffer).

ERRORS
GL_INVALID_ENUM isgenerated if opcode is not an accepted value.

Page 1 July 22, 1997

FGLLOGICOP() UNIX System V FGLLOGICOP()

GL_INVALID_OPERATION is generated if fglLogicOp is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_L OGIC_OP_MODE.
fgll sEnabled with argument GL_COLOR_LOGIC_OP or GL_INDEX_LOGIC_OP.

SEE ALSO
fglAlphaFunc, fgiBlendFunc, fglDrawBuffer, fglEnable, fglStencilOp

July 22, 1997 Page 2

FGLMAP1() UNIX System V FGLMAP1()

NAME
fglMapld, fgiM ap1f — define a one-dimensional evaluator

FORTRAN SPECIFICATION

SUBROUTINE fgIMap1d(INTEGER*4 target,
REAL*8 ul,
REAL*8 u2,
INTEGER*4 stride,
INTEGER*4 order,
CHARACTER*8 points)

SUBROUTINE fgIM ap1f(INTEGER* 4 target,
REAL*4 ul,
REAL*4 u2,
INTEGER*4 stride,
INTEGER*4 order,
CHARACTER*8 points)

delim $$

PARAMETERS
target Specifies the kind of values that are generated by the evaluator. Symbolic constants
GL_MAP1 VERTEX_3, GL_MAP1 VERTEX_4, GL_MAP1_INDEX,
GL_MAP1 COLOR_4, GL_MAP1 NORMAL, GL_MAP1 TEXTURE_COORD 1,
GL_MAP1 TEXTURE_COORD_2, GL_MAP1 TEXTURE_COORD_3, and
GL_MAP1 TEXTURE_COORD_4 are accepted.

ul, u2 Specify a linear mapping of u, as presented to fglEvalCoordl, to $u hat$, the variable that is
evaluated by the equations specified by this command.

stride Specifies the number of floats or doubles between the beginning of one control point and the begin-
ning of the next one in the data structure referenced in points. This allows control points to be
embedded in arbitrary data structures. The only constraint is that the values for a particular control
point must occupy contiguous memory locations.

order Specifies the number of control points. Must be positive.
points Specifies a pointer to the array of control points.

DESCRIPTION
Evaluators provide a way to use polynomial or rational polynomia mapping to produce vertices, normals,
texture coordinates, and colors. The values produced by an evaluator are sent to further stages of GL pro-
cessing just as if they had been presented using fglVertex, fglNormal, fglTexCoord, and fglColor com-
mands, except that the generated values do not update the current normal, texture coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the
GL implementation) can be described using evaluators. These include amost all splines used in computer
graphics: B-splines, Bezier curves, Hermite splines, and so on.

Evaluators define curves based on Bernstein polynomials. Define $p (uhat 7)) $ as
$p(uhat™) "="up10{ sumfromi=0ton} Bsubisupn(uhat”) Rsubi$

where $R sub i$ isa control point and $B sub i sup n (u hat “)$ is the ith Bernstein polynomial of degree
n (order = $n + 19):

$B subisupn(uhat”) "=""left (down 20 {cpile{ nabovei}} "right)uhatsupi (1-uhat”) sup{ n-i}$

Page 1 July 22, 1997

FGLMAP1() UNIX System V FGLMAP1()

Recall that

$0sup 0"=="1% and $ left (down 20 {cpile{ nabove™0}} “right) "=="1%

fglMap1l is used to define the basis and to specify what kind of values are produced. Once defined, a map
can be enabled and disabled by calling fglEnable and fglDisable with the map name, one of the nine
predefined values for target described below. fglEvalCoord1 evaluates the one-dimensional maps that are
enabled. When

fglEvalCoord1 presents a value u, the Bernstein functions are evaluated using $u hat$, where

$u hat ~=""{u"~-""ul"} over {"u2" " "ul"}$

target is a symbolic constant that indicates what kind of control points are provided in points, and what out-
put is generated when the map is evaluated. It can assume one of nine predefined values:

GL_MAP1 VERTEX_3 Each control point is three floating-point values representing x, y, and
z. Interna fglVertex3 commands are generated when the map is
evaluated.

GL_MAP1 VERTEX_4 Each control point is four floating-point values representing x, y, $z3,
and w. Interna fglVertex4 commands are generated when the map is
evaluated.

GL_MAP1 INDEX Each control point is a single floating-point value representing a color
index. Internal fgllndex commands are generated when the map is
evaluated but the current index is not updated with the value of these fglln-
dex commands.

GL_MAP1 COLOR 4 Each control point is four floating-point values representing red, green, blue,
and alpha. Internal fglColor4 commands are generated when the map is
evaluated but the current color is not updated with the value of these
fglColor4 commands.

GL_MAP1 NORMAL Each control point is three floating-point values representing the x, y,
and z components of a normal vector. Internal fgINormal commands are
generated when the map is evaluated but the current normal is not updated
with the value of these fgINor mal commands.

GL_MAP1 TEXTURE_COORD_1
Each control point is a single floating-point value representing the s tex-
ture coordinate. Internal
fglTexCoord1 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these fglTex-
Coord commands.

GL_MAP1 TEXTURE_COORD 2
Each control point is two floating-point values representing the s and t
texture coordinates. Internal
fglTexCoord2 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these fglTex-
Coord commands.

GL_MAP1 TEXTURE_COORD 3
Each control point is three floating-point values representing the s, t,
and r texture coordinates. Internal fglTexCoord3 commands are gen-
erated when the map is evaluated but the current texture coordinates are not
updated with the value of these fgl TexCoord commands.

July 22, 1997 Page 2

FGLMAP1() UNIX System V FGLMAP1()

NOTES

GL_MAP1 TEXTURE_COORD_4
Each control point is four floating-point values representing the s, t,
r, and g texture coordinates. Internal
fgl TexCoor d4 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these fglTex-
Coord commands.

stride, order, and points define the array addressing for accessing the control points. points is the location
of the first control point, which occupies one, two, three, or four contiguous memory locations, depending
on which map is being defined. order is the number of control points in the array. stride specifies how
many float or double locations to advance the internal memory pointer to reach the next control point.

As is the case with all GL commands that accept pointers to data, it is as if the contents of points were
copied by fgIMapl before fgiMapl returns. Changes to the contents of points have no effect after
fglMapliscalled.

ERRORS

GL_INVALID_ENUM isgenerated if target is not an accepted value.
GL_INVALID_VALUE isgenerated if ul isequal to u2.
GL_INVALID_VALUE isgenerated if stride isless than the number of valuesin a control point.

GL_INVALID_VALUE is generated if order is less than 1 or greater than the return vaue of
GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION isgenerated if fgIMapl is executed between the execution of fglBegin and
the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGetMap

fglGet with argument GL_MAX_EVAL_ORDER

fgllsEnabled with argument GL_MAP1 VERTEX_3
fgllsEnabled with argument GL_MAPL1 VERTEX_4
fgllsEnabled with argument GL_MAPL1_INDEX

fgllsEnabled with argument GL_MAP1 COLOR_4
fgllsEnabled with argument GL_MAP1 NORMAL

fgllsEnabled with argument GL_MAP1 TEXTURE_COORD_1
fgllsEnabled with argument GL_MAP1 TEXTURE_COORD_2
fgllsEnabled with argument GL_MAP1 TEXTURE_COORD_3
fgllsEnabled with argument GL_MAP1 TEXTURE_COORD_4

SEE ALSO

Page 3

fglBegin, fglColor, fglEnable, fglEvalCoord, fglEvalMesh, fglEvalPoint, fglMap2, fglMapGrid,
fgINormal, fglTexCoord, fglVertex

July 22, 1997

FGLMAP2()

NAME

UNIX System V FGLMAP2()

fglMap2d, fgiM ap2f — define atwo-dimensional evaluator

FORTRAN SPECIFICATION
SUBROUTINE fgIMap2d(INTEGER* 4 target,

Page 1

REAL*8 ul,

REAL*8 u2,
INTEGER*4 ustride,
INTEGER*4 uorder,
REAL*8 V1,

REAL*8 V2,
INTEGER*4 vstride,
INTEGER*4 vorder,
CHARACTER*8 points)

SUBROUTINE fgIM ap2f(INTEGER* 4 target,

REAL*4 ul,

REAL*4 u2,
INTEGER*4 ustride,
INTEGER*4 uorder,
REAL*4v1,

REAL*4 V2,
INTEGER*4 vstride,
INTEGER*4 vorder,
CHARACTER*8 points)

delim $$
PARAMETERS

target

ul, u2

ustride

uorder

vl, v2

vstride

Specifies the kind of values that are generated by the evaluator. Symbolic constants

GL_MAP2_VERTEX_3, GL_MAP2 VERTEX_4, GL_MAP2_INDEX,
GL_MAP2 COLOR 4, GL_MAP2 NORMAL, GL_MAP2 TEXTURE_COORD 1,
GL_MAP2_TEXTURE_COORD 2, GL_MAP2_TEXTURE_COORD 3, and

GL_MAP2_TEXTURE_COORD_4 are accepted.

Specify alinear mapping of u, as presented to fglEvalCoord2, to $u hat$, one of the two vari-
ables that are evaluated by the equations specified by this command. Initially, ulisOand u2is1.

Specifies the number of floats or doubles between the beginning of control point $R sub ij$ and the
beginning of control point $R sub { (i+1) j }$, where i and j are the u and v control point
indices, respectively. This alows control points to be embedded in arbitrary data structures. The
only constraint is that the values for a particular control point must occupy contiguous memory
locations. Theinitial value of ustrideisO.

Specifies the dimension of the control point array in the u axis. Must be positive. The initia
valueis1.

Specify a linear mapping of v, as presented to fglEvalCoord2, to $v hat$, one of the two vari-
ables that are evaluated by the equations specified by this command. Initially, vlisOand v2is 1.

Specifies the number of floats or doubles between the beginning of control point $R sub ij$ and the
beginning of control point $R sub { i (j+1) }$, where i and j are the u and v control point
indices, respectively. This allows control points to be embedded in arbitrary data structures. The
only constraint is that the values for a particular control point must occupy contiguous memory
locations. Theinitial value of vstride isO.

July 22, 1997

FGLMAP2() UNIX System V FGLMAP2()

vorder Specifies the dimension of the control point array in the v axis. Must be positive. The initia
vaueis1.

points Specifies a pointer to the array of control points.

DESCRIPTION
Evaluators provide a way to use polynomial or rational polynomia mapping to produce vertices, normals,
texture coordinates, and colors. The values produced by an evaluator are sent on to further stages of GL
processing just as if they had been presented using fglVertex, fgiINormal, fglTexCoord, and fglColor
commands, except that the generated values do not update the current normal, texture coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the
GL implementation) can be described using evaluators. These include amost all surfaces used in computer
graphics, including B-spline surfaces, NURBS surfaces, Bezier surfaces, and so on.

Evaluators define surfaces based on bivariate Bernstein polynomials. Define$p (uhat, v hat) $as

p(uhat,vha™) "=""up 10 {sum from i=0to n sum fromj=0tom} B subisupn(uhat ") Bsubjsupm(vhat") Rsubij

where $R sub ij$ isa control point, $B sub i sup n (u hat)$ is the ith Bernstein polynomial of degree
n (uorder = $n + 19)

B subisupn(uhat™) 7=""left (down 20 {cpile{ nabovei}} " right)uhat supi (1-uhat”) sup{ n-i}
and $B sub j sup m (v hat ")$ is the jth Bernstein polynomial of degree m (vorder = $m + 13)
B subjsupm (v hat™) "=""left (down 20 {cpile{ mabovej}} “right) vhatsupj (1-vha”)sup{m-j}

Recall that
$0sup 0"=="1$ and $ left (down 20 {cpile{ nabove™0}} “right) "=="1%

fglMap2 is used to define the basis and to specify what kind of values are produced. Once defined, a map
can be enabled and disabled by calling fglEnable and fglDisable with the map name, one of the nine
predefined values for target, described below. When fglEvalCoord2 presents values u and v, the
bivariate Bernstein polynomials are evaluated using $u hat$ and $v hat$, where

$u hat ~=""{u™-""ul"} over {"u2" " "ul"}$
$v hat ~=""{v ™" "v1"} over {"v2" " "v1'}$

target is a symbolic constant that indicates what kind of control points are provided in points, and what out-
put is generated when the map is evaluated. It can assume one of nine predefined values:

GL_MAP2 VERTEX_3 Each control point is three floating-point values representing x, y, and
z. Interna fglVertex3 commands are generated when the map is
evaluated.

GL_MAP2 VERTEX 4 Each control point is four floating-point values representing x, y, $z3$,
and w. Interna fglVertex4 commands are generated when the map is
evaluated.

GL_MAP2_INDEX Each control point is a single floating-point value representing a color
index. Internal fgllndex commands are generated when the map is
evaluated but the current index is not updated with the value of these fglln-
dex commands.

July 22, 1997 Page 2

FGLMAP2() UNIX System V FGLMAP2()

NOTES

GL_MAP2 COLOR_4 Each control point is four floating-point values representing red, green, blue,
and alpha. Internal fglColor4 commands are generated when the map is
evaluated but the current color is not updated with the value of these
fglColor4 commands.

GL_MAP2 NORMAL Each control point is three floating-point values representing the x, y,
and z components of a normal vector. Interna fglNormal commands are
generated when the map is evaluated but the current normal is not updated
with the value of these fgINor mal commands.

GL_MAP2 TEXTURE_COORD_1
Each control point is a single floating-point value representing the s tex-
ture coordinate. Internal
fglTexCoord1l commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these fglTex-
Coord commands.

GL_MAP2 TEXTURE_COORD 2
Each control point is two floating-point values representing the s and t
texture coordinates. Internal
fglTexCoord2 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these fglTex-
Coord commands.

GL_MAP2 TEXTURE_COORD_3
Each control point is three floating-point values representing the s, t,
and r texture coordinates. Internal fglTexCoord3 commands are gen-
erated when the map is evaluated but the current texture coordinates are not
updated with the value of these fgl TexCoord commands.

GL_MAP2_TEXTURE_COORD_4
Each control point is four floating-point values representing the s, t,
r, and g texture coordinates. Internal
fgl TexCoor d4 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these fglTex-
Coord commands.

ustride, uorder, vstride, vorder, and points define the array addressing for accessing the control points.
points is the location of the first control point, which occupies one, two, three, or four contiguous memory
locations, depending on which map is being defined. There are $ "uorder” times "vorder" $ control points
in the array. ustride specifies how many float or double locations are skipped to advance the internal
memory pointer from control point $R sub {i j} $to control point $R sub {(i+1) j} $. vstride specifies how
many float or double locations are skipped to advance the internal memory pointer from control point $R
sub {i j} $to control point $R sub {i (j+1) } $.

As is the case with al GL commands that accept pointers to data, it is as if the contents of points were
copied by fglMap2 before fgiIMap2 returns. Changes to the contents of points have no effect after
fglMap2iscalled.

Initially, GL_AUTO_NORMAL is enabled. If GL_AUTO_NORMAL is enabled, norma vectors are
generated when either GL_MAP2_ VERTEX_3 or GL_MAP2_VERTEX_4 isused to generate vertices.

ERRORS

Page 3

GL_INVALID_ENUM isgenerated if target is not an accepted value.
GL_INVALID_VALUE isgenerated if ul isequal to u2, or if vl isequal to v2.

July 22, 1997

FGLMAP2() UNIX System V FGLMAP2()

GL_INVALID_VALUE isgenerated if either ustride or vstride is less than the number of valuesin a con-
trol point.

GL_INVALID_VALUE is generated if either uorder or vorder is less than 1 or greater than the return
valueof GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION isgenerated if fgIMap2 is executed between the execution of fglBegin and
the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGetMap
fglGet with argument GL_MAX_EVAL_ORDER
fgllsEnabled with argument GL_MAP2_VERTEX_3
fgllsEnabled with argument GL_MAP2 VERTEX_4
fgll sEnabled with argument GL_MAP2_INDEX
fgll sEnabled with argument GL_MAP2_COLOR_4
fgll sEnabled with argument GL_MAP2_NORMAL
fgllsEnabled with argument GL_MAP2_TEXTURE_COORD_1
fgll sEnabled with argument GL_MAP2_TEXTURE_COORD_2
fgllsEnabled with argument GL_MAP2_TEXTURE_COORD_3
fgllsEnabled with argument GL_MAP2_TEXTURE_COORD_4

SEE ALSO
fglBegin, fglColor, fglEnable, fglEvalCoord, fglEvalMesh, fglEvalPoint, fglMapl, fglMapGrid,
fglNormal, fglTexCoord, fglVertex

July 22, 1997 Page 4

FGLMAPGRID () UNIX System V FGLMAPGRID()

NAME

fglMapGridid, fgIMapGrid1f, fgiMapGrid2d, fglM apGrid2f — define a one- or two-dimensional mesh

FORTRAN SPECIFICATION

SUBROUTINE fgIMapGrid1d(INTEGER*4 un,
REAL*8 ul,
REAL*8u2)
SUBROUTINE fgIMapGrid1f(INTEGER*4 un,
REAL*4 ul,
REAL*4 u2)
SUBROUTINE fgIMapGrid2d(INTEGER* 4 un,
REAL*8 ul,
REAL*8 u2,
INTEGER*4 vn,
REAL*8 V1,
REAL*8Vv2)
SUBROUTINE fgIM apGrid2f(INTEGER*4 un,
REAL*4 ul,
REAL*4 u2,
INTEGER*4 vn,
REAL*4 V1,
REAL*42)

delim $$

PARAMETERS

un Specifies the number of partitionsin the grid range interval [ul, u2]. Must be positive.
ul, u2
Specify the mappings for integer grid domain values $i=0$ and $i="un"$.
vn Specifies the number of partitionsin the grid range interval [v1, v2]
(falMapGrid2 only).
vl, v2
Specify the mappings for integer grid domain values $j=0$ and $j="vn"$
(folMapGrid2 only).

DESCRIPTION

Page 1

fglMapGrid and fglEvalMesh are used together to efficiently generate and evaluate a series of evenly-
spaced map domain values. fglEvalMesh steps through the integer domain of a one- or two-dimensional
grid, whose range is the domain of the evaluation maps specified by fgIM ap1 and fgiM ap2.

fglMapGridl and fgIMapGrid2 specify the linear grid mappings between the i (or i and j) integer
grid coordinates, to the u (or u and v) floating-point evaluation map coordinates. See fglMapl and
fglMap2 for details of how u and v coordinates are evaluated.

fglMapGridl specifies a single linear mapping such that integer grid coordinate O maps exactly to ul, and
integer grid coordinate un maps exactly to u2. All other integer grid coordinates i are mapped so that

u™="i ("u2" - "ul") / "un" T+ "ul”

fglMapGrid2 specifies two such linear mappings. One maps integer grid coordinate $i=03$ exactly to ul,
and integer grid coordinate $i="un"$ exactly to u2. The other maps integer grid coordinate $j=0% exactly
to v, and integer grid coordinate $j="vn"$ exactly to v2. Other integer grid coordinates i and j are
mapped such that

July 22, 1997

FGLMAPGRID () UNIX System V FGLMAPGRID()

u™="i ("u2" - "ul") /"un" "+ "ul"

v (v - et [vt T L
The mappings specified by fglMapGrid are used identically by fglEvalM esh and fglEvalPaint.

ERRORS
GL_INVALID_VALUE isgenerated if either un or vn is not positive.

GL_INVALID_OPERATION isgenerated if fgiMapGrid is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MAPL_GRID_DOMAIN
fglGet with argument GL_MAP2_GRID_DOMAIN
fglGet with argument GL_MAP1_GRID_SEGMENTS
fglGet with argument GL_MAP2_GRID_SEGMENTS

SEE ALSO
fglEvalCoord, fglEvalM esh, fglEvalPoint, fgiM ap1, fglM ap2

July 22, 1997 Page 2

FGLMATERIAL () UNIX System V FGLMATERIAL ()

NAME

fglMaterialf, fglMateriali, fglMaterialfv, fglMaterialiv — specify material parameters for the lighting
model

FORTRAN SPECIFICATION
SUBROUTINE fglM aterialf(INTEGER* 4 face,
INTEGER* 4 pname,
REAL*4 param)
SUBROUTINE fglM ateriali(INTEGER* 4 face,
INTEGER* 4 pname,
INTEGER*4 param)

PARAMETERS

face Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

pname Specifies the single-valued material parameter of the face or faces that is being updated. Must be
GL_SHININESS.

param Specifies the value that parameter GL_SHININESSwill be set to.

FORTRAN SPECIFICATION
SUBROUTINE fglMaterialfv(INTEGER*4 face,
INTEGER*4 pnarme,
CHARACTER*8 params)
SUBROUTINE fgiMaterialiv(INTEGER* 4 face,
INTEGER*4 pname,
CHARACTER*8 params)

PARAMETERS

face Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

pname Specifies the material parameter of the face or faces that is being updated. Must be one of
GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS,
GL_AMBIENT_AND_DIFFUSE, or GL_COLOR_INDEXES.

params Specifies a pointer to the value or values that pname will be set to.

DESCRIPTION
fglMaterial assigns values to material parameters. There are two matched sets of material parameters.
One, the front-facing set, is used to shade points, lines, bitmaps, and all polygons (when two-sided lighting
isdisabled), or just front-facing polygons (when two-sided lighting is enabled). The other set, back-facing,
is used to shade back-facing polygons only when two-sided lighting is enabled. Refer to the fglLightM o-
del reference page for details concerning one- and two-sided lighting calculations.

fglMaterial takes three arguments. The first, face, specifies whether the GL_FRONT materials, the
GL_BACK materials, or both GL_FRONT_AND_BACK materials will be modified. The second,
pname, specifies which of several parameters in one or both sets will be modified. The third, params,
specifies what value or values will be assigned to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each vertex. The equa
tion is discussed in the fglLightM odel reference page. The parameters that can be specified using fgiM a-
terial, and their interpretations by the lighting equation, are as follows:;

GL_AMBIENT params contains four integer or floating-point values that specify the ambient
RGBA reflectance of the material. Integer values are mapped linearly such that

Page 1 July 22, 1997

FGLMATERIAL ()

GL_DIFFUSE

GL_SPECULAR

GL_EMISSION

GL_SHININESS

UNIX System V FGLMATERIAL ()

the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating-point values are mapped directly.
Neither integer nor floating-point values are clamped. The initial ambient
reflectance for both front- and back-facing materialsis (0.2, 0.2, 0.2, 1.0).

params contains four integer or floating-point values that specify the diffuse
RGBA reflectance of the material. Integer values are mapped linearly such that
the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating-point values are mapped directly.
Neither integer nor floating-point values are clamped. The initial diffuse
reflectance for both front- and back-facing materialsis (0.8, 0.8, 0.8, 1.0).

params contains four integer or floating-point values that specify the specular
RGBA reflectance of the material. Integer values are mapped linearly such that
the most positive representable value maps to 1.0, and the most negative
representable value maps to —1.0. Floating-point values are mapped directly.
Neither integer nor floating-point values are clamped. The initial specular
reflectance for both front- and back-facing materialsis (0, O, O, 1).

params contains four integer or floating-point values that specify the RGBA emit-
ted light intensity of the material. Integer values are mapped linearly such that the
most positive representable value maps to 1.0, and the most negative representable
value maps to —1.0. Floating-point values are mapped directly. Neither integer
nor floating-point values are clamped. The initial emission intensity for both
front- and back-facing materialsis (0, O, O, 1).

paramsisasingle integer or floating-point value that specifies the RGBA specular
exponent of the material. Integer and floating-point values are mapped directly.
Only vaues in the range [0,128] are accepted. The initial specular exponent for
both front- and back-facing materialsisO.

GL_AMBIENT_AND_DIFFUSE

Equivalent to calling fglM aterial twice with the same parameter values, once with
GL_AMBIENT and once with GL_DIFFUSE.

GL_COLOR_INDEXES

NOTES

params contains three integer or floating-point values specifying the color indices
for ambient, diffuse, and specular lighting. These three vaues, and
GL_SHININESS, are the only material values used by the color index mode
lighting equation. Refer to the fglLightModel reference page for a discussion of
color index lighting.

The material parameters can be updated at any time. In particular, fglMaterial can be called between a
call to fgIBegin and the corresponding call to fglEnd. If only asingle material parameter is to be changed
per vertex, however, fglColorMaterial is preferred over fgiMaterial (see fglColor M aterial).

ERRORS

GL_INVALID_ENUM isgenerated if either face or pname is not an accepted value.
GL_INVALID_VALUE isgenerated if a specular exponent outside the range [0,128] is specified.

ASSOCIATED GETS
fglGetM aterial

SEE ALSO

fglColorMaterial, fglLight, fglLightM odel

July 22, 1997

Page 2

FGLMATRIXMODE() UNIX System V FGLMATRIXMODE()

NAME
fglM atrixM ode — specify which matrix is the current matrix

FORTRAN SPECIFICATION
SUBROUTINE fgIM atrixM ode(INTEGER*4 mode)

PARAMETERS
mode Specifies which matrix stack is the target for subsequent matrix operations. Three values are
accepted: GL_MODELVIEW, GL_PROJECTION, and GL_TEXTURE. The initia vaue is
GL_MODELVIEW.

DESCRIPTION
fglMatrixM ode sets the current matrix mode. mode can assume one of three values:

GL_MODELVIEW Applies subsequent matrix operations to the modelview matrix stack.
GL_PROJECTION Applies subsequent matrix operations to the projection matrix stack.
GL_TEXTURE Applies subsequent matrix operations to the texture matrix stack.

To find out which matrix stack is currently the target of all matrix operations, call fglGet with argument
GL_MATRIX_MODE. Theinitial valueisGL_MODELVIEW.

ERRORS
GL_INVALID_ENUM isgenerated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if fgiMatrixMode is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE

SEE ALSO
fglLoadMatrix, fglPushMatrix

Page 1 July 22, 1997

FGLMULTMATRIX() UNIX System V FGLMULTMATRIX()

NAME

fglMultMatrixd, fgIMultM atrixf — multiply the current matrix with the specified matrix

FORTRAN SPECIFICATION

SUBROUTINE fgiIMultMatrixd(CHARACTER*8 m)
SUBROUTINE fgIMultMatrixf(CHARACTER*8 m)

delim $$

PARAMETERS

m Pointsto 16 consecutive values that are used as the elements of a $4 times 4% column-major matrix.

DESCRIPTION

fglMultMatrix multiplies the current matrix with the one specified using m, and replaces the current
matrix with the product.

The current matrix is determined by the current matrix mode (see fglMatrixMode). It is either the projec-
tion matrix, modelview matrix, or the texture matrix.

EXAMPLES

NOTES

Page 1

If the current matrix is C, and the coordinates to be transformed are, $v = (v[0], v[1], v[2], v[3])$. Then
the current transformation is $C “times™ v$, or

down 130
{{ left (matrix {
ccol { ¢[0] above c[1] above c[2] above c[3] }
ccol { c[4] above c[5] above c[6] above c[7] }
ccol { ¢[8] above c[9] above c[10] above c[11] }
ccol { c[12]" above c[13]" above c[14]" above c[15]" } } right) } ™ times™ {left (matrix { ccol { v[0]”
above v[1]” above v[2]” aboveVv[3]"} } right)} }

Calling fglMultMatrix with an argument of $'m" = m[0], m[1], ..., m[15]%$ replaces the current transfor-
mation with $(C “times™ M) “times™ v$, or

down 130

{{ left (matrix {

ccol { ¢[0] above c[1] above c[2] above c[3] }

ccol { c[4] above c[5] above c[6] above c[7] }

ccol { ¢[8] above c[9] above c[10] above c[11] }

ccol { ¢[12]™ above ¢[13]™ above c[14]™ above ¢c[15]" } } right) } T~ times™ { left (matrix {

ccol { m[0] above m[1] above m[2] above m[3] }

ccol { m[4] above m[5] above m[6] above m[7] }

ccol { m[8] above m[9] above m[10] above m[11] }

ccol { m[12]™ above m[13]" above m[14]™ above m[15]" } } right) } ™ times ™ {left (matrix { ccol {
v[0]” above v[1]™ above v[2]™ above Vv[3]" } } right)} }

Where' $times$’ denotes matrix multiplication, and v is represented as a $4 “times™ 1$ matrix.

While the elements of the matrix may be specified with single or double precision, the GL may store or
operate on these values in less than single precision.

In many computer languages $4 times 4% arrays are represented in row-major order. The transformations
just described represent these matrices in column-major order. The order of the multiplication isimportant.
For example, if the current transformation is a rotation, and fglMultMatrix is called with a trandation

July 22, 1997

FGLMULTMATRIX() UNIX System V FGLMULTMATRIX()

matrix, the tranglation is done directly on the coordinates to be transformed, while the rotation is done on
the results of that trandlation.

ERRORS
GL_INVALID_OPERATION isgenerated if fgIMultMatrix is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE
fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX

SEE ALSO
fglL oadl dentity, fglLoadM atrix, fglMatrixM ode, fglPushM atrix

July 22, 1997 Page 2

FGLNEWLIST () UNIX System V FGLNEWLIST ()

NAME
fglNewL ist, fglEndList — create or replace adisplay list

FORTRAN SPECIFICATION
SUBROUTINE fgINewL ist(INTEGER*4 list,
INTEGER*4 mode)

PARAMETERS
list Specifiesthe display-list name.

mode
Specifies the compilation mode, which can be GL_COMPILE or
GL_COMPILE_AND_EXECUTE.

FORTRAN SPECIFICATION
SUBROUTINE fglEndList()

DESCRIPTION
Display lists are groups of GL commands that have been stored for subsequent execution. Display lists are
created with fgINewL ist. All subsequent commands are placed in the display list, in the order issued, until
fglEndList iscalled.

fglNewL ist has two arguments. The first argument, list, is a positive integer that becomes the unique name
for the display list. Names can be created and reserved with fglGenLists and tested for uniqueness with
fgllsList. The second argument, mode, is a symbolic constant that can assume one of two values:

GL_COMPILE Commands are merely compiled.

GL_COMPILE_AND_EXECUTE
Commands are executed as they are compiled into the display list.

Certain commands are not compiled into the display list but are executed immediately, regardless of the
display-liss mode. These commands are fglColorPointer, fglDeletelists, fglDisableClientState,
fglEdgeFlagPointer, fglEnableClientState, fglFeedbackBuffer, fglFinish, fglFlush, fglGenLists, fglln-
dexPointer, fgllnterleavedArrays, fgllsEnabled, fgllsList, fgINormalPointer, fglPopClientAttrib,
foglPixelStore, fglPushClientAttrib, fglReadPixels, fglRenderMode, fglSelectBuffer, fglTexCoord-
Pointer, fglVertexPointer, and all of the fglGet commands.

Similarly, fglTeximage2D and fglTexImagelD are executed immediately and not compiled into the
display list when their first argument is GL_PROXY_TEXTURE_2D or GL_PROXY_TEXTURE_1D,
respectively.

When fglEndList is encountered, the display-list definition is completed by associating the list with the

unique name list (specified in the fgINewL ist command). If adisplay list with name list already exists, itis
replaced only when fglEndList is called.

NOTES
fglCallList and fglCallLists can be entered into display lists. Commands in the display list or lists exe-
cuted by fglCallList or fglCallLists are not included in the display list being created, even if the list crea-
tionmodeisGL_COMPILE_AND_EXECUTE.

A display list isjust a group of commands and arguments, so errors generated by commands in a display
list must be generated when the list is executed. If the list is created in GL_COMPILE mode, errors are
not generated until the list is executed.

ERRORS
GL_INVALID_VALUE isgenerated if listisO.

Page 1 July 22, 1997

FGLNEWLIST () UNIX System V FGLNEWLIST ()

GL_INVALID_ENUM isgenerated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if fglEndList is called without a preceding fgiINewL ist, or if
fglNewL ist iscalled while adisplay list is being defined.

GL_INVALID_OPERATION is generated if fgINewList or fglEndList is executed between the execu-
tion of fglBegin and the corresponding execution of fglEnd.

GL_OUT_OF_MEMORY is generated if there is insufficient memory to compile the display list. If the

GL version is 1.1 or greater, no change is made to the previous contents of the display list, if any, and no

other change is made to the GL state. (It isasif no attempt had been made to create the new display list.)
ASSOCIATED GETS

follsList

fglGet with argument GL_LIST_INDEX

fglGet with argument GL_LI1ST_MODE

SEE ALSO
foglCallList, fglCallLists, fglDeletel ists, fglGenLists

July 22, 1997 Page 2

FGLNORMAL () UNIX System V FGLNORMAL ()

NAME
fglNormal3b, fgiNormal3d, fgiNormal3f, fglNormal3i, fglNormal3s, fgINormal3bv, fglNormal3dv,
fglNormal3fv, fgINor mal 3iv, fgINor mal3sv — set the current normal vector

delim $$

FORTRAN SPECIFICATION

SUBROUTINE fgINormal3b(INTEGER* 1 nx,
INTEGER*1 ny,
INTEGER*1 nz)

SUBROUTINE fgINormal3d(REAL*8 nx,
REAL*8ny,
REAL*8nz)

SUBROUTINE fgINor mal3f(REAL*4 nx,
REAL*4 ny,
REAL*4 nz)

SUBROUTINE fgINormal3i(INTEGER*4 nx,
INTEGER*4 ny,
INTEGER*4 nz)

SUBROUTINE fgINormal3s(INTEGER*2 nx,
INTEGER*2 ny,
INTEGER*2 nz)

PARAMETERS
nx, ny, nz
Specify the x, y, and z coordinates of the new current normal. The initial value of the
current normal isthe unit vector, (0, 0, 1).

FORTRAN SPECIFICATION
SUBROUTINE fglNor mal3bv(CHARACTER*8 V)
SUBROUTINE fgINor mal3dv(CHARACTER*8 V)
SUBROUTINE fgINor mal3fv(CHARACTER*8 v)
SUBROUTINE fgINor mal3iv(CHARACTER*8 v)
SUBROUTINE fgINor mal3sv(CHARACTER*8 v)

PARAMETERS
v Specifies a pointer to an array of three elements: the x, y, and z coordinates of the new
current normal.

DESCRIPTION
The current normal is set to the given coordinates whenever fgiNormal isissued. Byte, short, or integer
arguments are converted to floating-point format with a linear mapping that maps the most positive
representable integer value to 1.0, and the most negative representable integer value to —1.0.

Normals specified with fgINormal need not have unit length. If normalization is enabled, then normals
specified with fgINormal are normalized after transformation. To enable and disable normalization, call
fglEnable and fglDisable with the argument GL_NORMALIZE. Normalizationisinitially disabled.

NOTES
The current normal can be updated at any time. In particular, fgINormal can be called between a call to
fglBegin and the corresponding call to fglEnd.

ASSOCIATED GETS
fglGet with argument GL_CURRENT_NORMAL
fgllsEnabled with argument GL_NORMALIZE

Page 1 July 22, 1997

FGLNORMAL () UNIX System V FGLNORMAL ()

SEE ALSO
fglBegin, fglColor, fgll ndex, fgINormalPointer, fglTexCoord, fglVertex

July 22, 1997 Page 2

FGLNORMALPOINTER() UNIX System V FGLNORMALPOINTER()

NAME

fglNor malPointer — define an array of normals

FORTRAN SPECIFICATION

SUBROUTINE fgINor malPointer (INTEGER* 4 type,
INTEGER*4 stride,
CHARACTER*8 pointer)

delim $$

PARAMETERS

type Specifies the data type of each coordinate in the array. Symbolic constants GL_BYTE,
GL_SHORT, GL_INT, GL_FLOAT, and GL_DOUBLE are accepted. The initial value is
GL_FLOAT.

stride Specifies the byte offset between consecutive normals. If stride is O- the initial value-the normals
are understood to be tightly packed in the array.

pointer Specifies a pointer to the first coordinate of the first normal in the array.

DESCRIPTION

NOTES

fglNormalPointer specifies the location and data format of an array of normals to use when rendering.
type specifies the data type of the normal coordinates and stride gives the byte stride from one normal to
the next, allowing vertexes and attributes to be packed into a single array or stored in separate arrays.
(Single-array storage may be more efficient on some implementations; see fglinterleavedArrays.) When
anormal array is specified, type, stride, and pointer are saved as client-side state.

To enable and disable the normal array, call fglEnableClientState and fglDisableClientState with the
argument GL_NORMAL_ARRAY. If enabled, the norma array is used when fglDrawArrays,
fglDrawElements, or fglArrayElement iscalled.

Use fglDrawArrays to construct a sequence of primitives (all of the same type) from prespecified vertex
and vertex attribute arrays. Use fglArrayElement to specify primitives by indexing vertexes and vertex
attributes and fglDrawElements to construct a sequence of primitives by indexing vertexes and vertex
attributes.

fgINormalPointer isavailable only if the GL version is 1.1 or greater.

The normal array is initialy disabled and isn't accessed when fglArrayElement, fglDrawElements, or
foglDrawArraysis called.

Execution of fgINormalPointer is not allowed between fglBegin and the corresponding fglEnd, but an
error may or may not be generated. If an error is not generated, the operation is undefined.

fglNor malPointer istypically implemented on the client side.

Since the normal array parameters are client-side state, they are not saved or restored by fglPushAttrib
and fglPopAttrib. UsefglPushClientAttrib and fglPopClientAttrib instead.

ERRORS

GL_INVALID_ENUM isgenerated if typeis not an accepted value.
GL_INVALID_VALUE isgenerated if stride is negative.

ASSOCIATED GETS

Page 1

fgll sEnabled with argument GL_NORMAL_ARRAY

fglGet with argument GL_NORMAL_ARRAY_TYPE

fglGet with argument GL_NORMAL_ARRAY_STRIDE
fglGetPointerv with argument GL_NORMAL_ARRAY_POINTER

July 22, 1997

FGLNORMALPOINTER() UNIX System V FGLNORMALPOINTER()

SEE ALSO
fglArrayElement, fglColorPointer, fglDrawArrays, fglDrawElements, fglEdgeFlagPointer, fglEn-
able, fglGetPointerv, fgllndexPointer, fgll nterleavedArrays, fglPopClientAttrib, fglPushClientAttrib,
fgl TexCoordPointer, fglVertexPointer

July 22, 1997 Page 2

FGLORTHO() UNIX System V FGLORTHO()

NAME
fglOrtho — multiply the current matrix with an orthographic matrix

FORTRAN SPECIFICATION
SUBROUTINE fglOrtho(REAL*8 left,

REAL*8right,
REAL*8 bottom,
REAL*8 top,
REAL*8 zNear,
REAL*8 zFar)
PARAMETERS
left, right
Specify the coordinates for the left and right vertical clipping planes.
bottom, top
Specify the coordinates for the bottom and top horizontal clipping planes.
ZNear, zFar
Specify the distances to the nearer and farther depth clipping planes. These values are negative if
the plane isto be behind the viewer.
DESCRIPTION

fglOrtho describes a transformation that produces a parallel projection. The current matrix (see fgiMa-
trixMode) is multiplied by this matrix and the result replaces the current matrix, asif fgIMultM atrix were
called with the following matrix as its argument:

left (matrix {
ccol { {2 over {"right" - "left"}} above 0 above 0 above 0}
ccol { 0 above {2 over {"top" - "bottom"}} above 0 above 0}
ccol { 0 above 0 above {-2 over {"zFar" - "zNear"}} aboveO}
ccol { {tsubx}~ above {t suby}~ above {t sub z}~ above 17} } right)

where
tsub x “=" -{{"right" + "left"} over {"right" - "left"}}

tsuby "="-{{"top" + "bottom"} over {"top" - "bottom"}}

tsubz™="-{{"zFar" + "zNear"} over {"zFar" - "zNear"}}

Typicaly, the matrix mode is GL_PROJECTION, and (left, bottom, —zNear) and (right, top, —zNear)
specify the points on the near clipping plane that are mapped to the lower left and upper right corners of the
window, respectively, assuming that the eye is located at (0, 0, 0). —zFar specifies the location of the far
clipping plane. Both zZNear and zFar can be either positive or negative.

Use fglPushMatrix and fglPopM atrix to save and restore the current matrix stack.

ERRORS
GL_INVALID_OPERATION is generated if fglOrtho is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE
fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX

Page 1 July 22, 1997

FGLORTHO() UNIX System V FGLORTHO()

SEE ALSO
fglFrustum, fgiM atrixM ode, fgIMultMatrix, fglPushMatrix, fglViewport

July 22, 1997 Page 2

FGLPASSTHROUGH() UNIX System V FGLPASSTHROUGH()

NAME
fglPassT hrough — place a marker in the feedback buffer

FORTRAN SPECIFICATION
SUBROUTINE fglPassThrough(REAL*4 token)

PARAMETERS
token Specifies a marker value to be placed in the feedback buffer following a
GL_PASS THROUGH_TOKEN.

DESCRIPTION
Feedback isa GL render mode. The mode is selected by calling fglRender Mode with GL_FEEDBACK.
When the GL is in feedback mode, no pixels are produced by rasterization. Instead, information about
primitives that would have been rasterized is fed back to the application using the GL. See the fglFeed-
backBuffer reference page for a description of the feedback buffer and the valuesin it.

fglPassT hrough inserts a user-defined marker in the feedback buffer when it is executed in feedback
mode. token is returned as if it were a primitive; it is indicated with its own unique identifying value:
GL_PASS THROUGH_TOKEN. The order of fglPassThrough commands with respect to the
specification of graphics primitivesis maintained.

NOTES
fglPassThrough isignored if the GL is not in feedback mode.

ERRORS
GL_INVALID_OPERATION is generated if fglPassThrough is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_RENDER_MODE

SEE ALSO
fglFeedbackBuffer, fglRender M ode

Page 1 July 22, 1997

FGLPIXELMAP() UNIX System V FGLPIXELMAP()

NAME

foglPixelM apfv, fglPixelM apuiv, fglPixelM apusv — set up pixel transfer maps

FORTRAN SPECIFICATION

SUBROUTINE fglPixelM apfv(INTEGER* 4 map,

INTEGER*4 mapsize,
CHARACTER*8 values)
SUBROUTINE fglPixelM apuiv(INTEGER*4 map,
INTEGER* 4 mapsize,
CHARACTER*8 values)
SUBROUTINE fglPixelM apusv(INTEGER* 4 map,
INTEGER*4 mapsize,
CHARACTER*8 values)
delim $$
PARAMETERS

map Specifies a symbolic map name. Must be one of the following: GL_PIXEL_MAP_| TO I,
GL_PIXEL_MAP_S TO_S,GL_PIXEL_MAP_| TO R,GL_PIXEL_MAP_I _TO_G,
GL_PIXEL_MAP_| TO B,GL_PIXEL_MAP_|I_TO_A,GL_PIXEL_MAP_R_TO_R,
GL_PIXEL_MAP_G TO_G,GL_PIXEL_MAP_B TO B,or GL_PIXEL_MAP_A_TO_A.

mapsize Specifies the size of the map being defined.

values Specifies an array of mapsize values.

DESCRIPTION

Page 1

fglPixelM ap sets up tranglation tables, or maps, used by fglCopyPixels, fglCopy T exImagelD,
fglCopyTexI mage2D, fglCopyTexSublmagelD, fglCopyTexSubl mage2D, fglDrawPixels, fglReadPix-
s, fgl TexlmagelD, fglTexl mage2D, fglTexSubl magelD, and fgl TexSublmage?D. Use of these maps
is described completely in the fglPixel Transfer reference page, and partly in the reference pages for the
pixel and texture image commands. Only the specification of the maps is described in this reference page.

map is a symbolic map name, indicating one of ten maps to set. mapsi ze specifies the number of entriesin
the map, and values is a pointer to an array of mapsize map values.

Theten maps are as follows:

GL_PIXEL MAP_|1 TO | Maps color indices to color indices.
GL_PIXEL_MAP S TO_S Maps stencil indices to stencil indices.
GL_PIXEL_MAP 1 TO R Maps color indices to red components.
GL_PIXEL MAP_1 TO G Maps color indices to green components.
GL_PIXEL MAP_1 TO B Maps color indices to blue components.
GL_PIXEL_MAP_1 TO A Maps color indices to apha components.
GL_PIXEL_ MAP_R_ TO R Maps red components to red components.
GL_PIXEL_MAP G TO_G Maps green components to green components.
GL_PIXEL MAP B TO B M aps blue components to blue components.
GL_PIXEL _MAP A TO A Maps alpha components to alpha components.

The entriesin amap can be specified as single-precision floating-point numbers, unsigned short integers, or
unsigned long integers. Maps that store color component values (all but GL_PIXEL_MAP_|I TO_I| and
GL_PIXEL_MAP_S TO_Y) retain their values in floating-point format, with unspecified mantissa and
exponent sizes. Floating-point values specified by fgl PixelM apfv are converted directly to the internal

July 22, 1997

FGLPIXELMAP() UNIX System V FGLPIXELMAP()

floating-point format of these maps, then clamped to the range [0,1]. Unsigned integer values specified by
fglPixelM apusv and fglPixelM apuiv are converted linearly such that the largest representable integer
maps to 1.0, and 0 mapsto 0.0.

Maps that store indices, GL_PIXEL_MAP_|I_TO_l and GL_PIXEL_MAP_S TO_S, retain their values
in fixed-point format, with an unspecified number of bitsto the right of the binary point. Floating-point
values specified by fglPixelM apfv are converted directly to the internal fixed-point format of these maps.
Unsigned integer values specified by fglPixelM apusv and fglPixelM apuiv specify integer values, with all
0’sto theright of the binary point.

The following table shows the initial sizes and values for each of the maps. Maps that are indexed by
either color or stencil indices must have mapsize = $2 sup n$ for some n or the results are undefined.
The maximum allowable size for each map depends on the implementation and can be determined by cal-
ling fglGet with argument GL_MAX_PIXEL _MAP_TABLE. The single maximum appliesto al maps;

itisat least 32.
map lookupindex | lookupvalue | initial size | initial value

GL_PIXEL_MAP_|_TO_I color index color index 1 0
GL_PIXEL_MAP_S TO S | gencil index | stencil index 1 0
GL_PIXEL_MAP_|I_TO R color index R 1 0
GL_PIXEL_MAP_|_TO_G color index G 1 0
GL_PIXEL_MAP_1_TO B color index B 1 0
GL_PIXEL_MAP_|I_TO_A color index A 1 0
GL_PIXEL_MAP R TO R R R 1 0
GL_PIXEL_MAP G TO G G G 1 0
GL_PIXEL_MAP B TO B B B 1 0
GL_PIXEL_MAP A TO A A A 1 0

ERRORS
GL_INVALID_ENUM isgenerated if map is not an accepted value.

GL_INVALID_VALUE isgenerated if mapsizeislessthan one or larger than
GL_MAX_PIXEL_MAP_TABLE.

GL_INVALID_VALUE isgenerated if mapisGL_PIXEL_MAP_|_TO I,
GL_PIXEL_MAP_S TO_S, GL_PIXEL_MAP_|_TO R, GL_PIXEL_MAP_| TO G,
GL_PIXEL_MAP_|_TO B, or GL_PIXEL_MAP_|_TO_A, and mapsize is not a power of two.

GL_INVALID_OPERATION isgenerated if fglPixelMap is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGetPixelMap
fglGet with argument GL_PIXEL_MAP_| TO | SIZE
fglGet with argument GL_PIXEL MAP_S TO_S SIZE
fglGet with argument GL_PIXEL_MAP_| TO R _SIZE
fglGet with argument GL_PIXEL_MAP_| TO G_SIZE
fglGet with argument GL_PIXEL_MAP_| TO B SIZE
fglGet with argument GL_PIXEL_MAP_| TO A _SIZE
fglGet with argument GL_PIXEL_MAP R TO R SIZE
fglGet with argument GL_PIXEL_MAP_G TO G _SIZE
fglGet with argument GL_PIXEL _MAP B TO B SIZE
fglGet with argument GL_PIXEL_MAP_A TO_A SIZE
fglGet with argument GL_MAX_PIXEL _MAP_TABLE

SEE ALSO
fglCopyPixels, fglCopyTexl magelD, fglCopyTexl mage2D, fglCopyTexSublmagelD,
fglCopyTexSublmage2D, fglDrawPixels, fglPixel Stor e, fglPixel Transfer, fglReadPixels,

July 22, 1997 Page 2

FGLPIXELMAP() UNIX System V FGLPIXELMAP()

fgl TexlmagelD, fglTexl mage2D, fglTexSubl magelD, fgl TexSubl mage2D

Page 3 July 22, 1997

FGLPIXELSTORE() UNIX System V FGLPIXELSTORE()

NAME
folPixelStor ef, fglPixelStorel — set pixel storage modes

FORTRAN SPECIFICATION
SUBROUTINE fglPixel Stor ef (INTEGER* 4 pname,

REAL*4 param)
SUBROUTINE fglPixelStorei(INTEGER* 4 pname,
INTEGER* 4 param)
delim $$
PARAMETERS
pname Specifies the symbolic name of the parameter to be set. Six values affect the packing of pixel data
into memory: GL_PACK_SWAP_BYTES, GL_PACK_LSB_FIRST,

GL_PACK_ROW_LENGTH, GL_PACK_SKIP_PIXELS, GL_PACK_SKIP_ROWS, and
GL_PACK_ALIGNMENT. Six more affect the unpacking of pixel data from memory:
GL_UNPACK_SWAP_BYTES, GL_UNPACK_LSB_FIRST,
GL_UNPACK_ROW_LENGTH, GL_UNPACK_SKIP_PIXELS,
GL_UNPACK_SKIP_ROWS, and GL_UNPACK_ALIGNMENT.

param Specifies the value that pname is set to.

DESCRIPTION
fglPixel Stor e sets pixel storage modes that affect the operation of subsequent fglDrawPixels and fglRead-
Pixels as well as the unpacking of polygon stipple patterns (see fglPolygonStipple), bitmaps (see fgiBit-
map), and texture patterns (see fglTexImagelD, fglTexImage2D, fglTexSublmagelD, and
fgl TexSubl mage2D).

pname is a symbolic constant indicating the parameter to be set, and param is the new value. Six of the
twelve storage parameters affect how pixel data is returned to client memory, and are therefore significant
only for fglReadPixels commands. They are asfollows:

GL_PACK_SWAP_BYTES

If true, byte ordering for multibyte color components, depth components, color indices, or
stencil indices is reversed. That is, if a four-byte component consists of bytes $b sub 0%, $b
sub 15, $b sub 2%, $b sub 3%, it is stored in memory as $b sub 3%, $b sub 2$, $b sub 1%, $b sub
0% if GL_PACK_SWAP_BYTESistrue. GL_PACK_SWAP_BYTES has no effect on the
memory order of components within a pixel, only on the order of bytes within components or
indices. For example, the three components of a GL_RGB format pixel are always stored
with red first, green second, and blue third, regardless of the vaue of
GL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the
first bit in each byte is the most significant one. This parameter is significant for bitmap data
only.

GL_PACK_ROW_LENGTH
If greater than 0, GL_PACK_ROW_LENGTH defines the number of pixelsin arow. If the
first pixel of arow is placed at location p in memory, then the location of the first pixel of
the next row is obtained by skipping

Sk "="left { Ipile{ nl above {aover sleft ceiling{ snl} over aright ceiling}} " Ipile{s>= aaboves< a}$

components or indices, where n is the number of components or indicesin a pixdl, I isthe
number of pixelsin arow (GL_PACK_ROW_LENGTH if it is greater than 0, the $width$

Page 1 July 22, 1997

FGLPIXELSTORE() UNIX System V FGLPIXELSTORE()

argument to the pixel routine otherwise), a is the value of GL_PACK_ALIGNMENT, and
s isthe size, in bytes, of asingle component (if $a< s$, thenitisasif $a=s$). Inthe case
of 1-bit values, the location of the next row is obtained by skipping

$k"="8aleft ceiling{ nl} over { 8a} right ceiling$

components or indices.

The word component in this description refers to the nonindex values red, green, blue, apha,
and depth. Storage format GL_RGB, for example, has three components per pixel: first red,
then green, and finally blue.

GL_PACK_SKIP_PIXELSand GL_PACK_SKIP_ROWS

These values are provided as a convenience to the programmer; they provide no functionality
that cannot be duplicated simply by incrementing the pointer passed to fglReadPixels. Setting
GL_PACK_SKIP_PIXELS to i is equivalent to incrementing the pointer by $i n$ com-
ponents or indices, where n is the number of components or indices in each pixel. Setting
GL_PACK_SKIP_ROWS to i is equivaent to incrementing the pointer by $j k$ com-
ponents or indices, where k is the number of components or indices per row, as just com-
puted inthe GL_PACK_ROW _LENGTH section.

GL_PACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The alowable
values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word-alignment),
and 8 (rows start on double-word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from client memory. These
values are significant for fglDrawPixels, fglTexImagelD, fglTexlmage2D, fglTexSublmagelD,
fgl TexSubl mage2D, fglBitmap, and

fglPolygonStipple. They are asfollows:

GL_UNPACK_SWAP_BYTES
If true, byte ordering for multibyte color components, depth components, color indices, or stencil
indices is reversed. That is, if a four-byte component consists of bytes $b sub 0%, $b sub 13, $b
sub 2$, $b sub 3$, it is taken from memory as $b sub 3%, $b sub 2%, $b sub 1%, $b sub 0% if
GL_UNPACK_SWAP_BYTES is true. GL_UNPACK_SWAP_BYTES has no effect on the
memory order of components within a pixel, only on the order of bytes within components or
indices. For example, the three components of a GL_RGB format pixel are always stored with
red first, green second, and blue third, regardless of the value of GL_UNPACK_SWAP_BYTES.

GL_UNPACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the first
bit in each byte isthe most significant one. Thisisrelevant only for bitmap data.

GL_UNPACK_ROW_LENGTH
If greater than 0, GL_UNPACK_ROW_LENGTH defines the number of pixelsin arow. If the
first pixel of arow is placed at location p in memory, then the location of the first pixel of the
next row is obtained by skipping

$k"="left { Ipile{ nl above{aover sleft ceiling{ snl} over aright ceiling}} ~ Ipile{s >= aaboves < a}$

components or indices, where n is the number of components or indices in a pixel, I is the
number of pixelsin arow (GL_UNPACK_ROW_LENGTH if it is greater than O, the $width$
argument to the pixel routine otherwise), a is the value of GL_UNPACK_ALIGNMENT, and
s isthe size, in bytes, of a single component (if $ a< s$, then itisasif $a=s$). In the case of
1-bit values, the location of the next row is obtained by skipping

July 22, 1997 Page 2

FGLPIXELSTORE()

NOTES

Page 3

UNIX System V FGLPIXELSTORE()

$k"="8aleft ceiling{ nl} over { 8a} right ceiling$

components or indices.

The word component in this description refers to the nonindex values red, green, blue, alpha, and
depth. Storage format GL_RGB, for example, has three components per pixel: first red, then
green, and finally blue.

GL_UNPACK_SKIP_PIXELSand GL_UNPACK_SKIP_ROWS

These values are provided as a convenience to the programmer; they provide no functionality that
cannot be duplicated by incrementing the pointer passed to fglDrawPixels, fglTexlmagelD,
foglTeximage2D, fglTexSublmagelD, fglTexSublmage2D, fgiBitmap, or fglPolygonStipple.
Setting GL_UNPACK _SKIP_PIXEL S to i is equivaent to incrementing the pointer by $i n$
components or indices, where n is the number of components or indices in each pixel. Setting
GL_UNPACK_SKIP_ROWS to j is equivalent to incrementing the pointer by $j k$ com-
ponents or indices, where k is the number of components or indices per row, as just computed
inthe GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The alowable
values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word-alignment), and
8 (rows start on double-word boundaries).

The following table gives the type, initial value, and range of valid values for each storage parameter that
can be set with fglPixelStore.

pname type initial value | valid range
GL_PACK_SWAP BYTES boolean fase true or false
GL_PACK_LSB_FIRST boolean fase true or false
GL_PACK_ROW_LENGTH integer 0 [0,00)
GL_PACK_SKIP_ROWS integer 0 [0,00)
GL_PACK_SKIP_PIXELS integer 0 [0,00)
GL_PACK_ALIGNMENT integer 4 1,2,4,0r8
GL_UNPACK_SWAP_BYTES | boolean fase true or false
GL_UNPACK_LSB_FIRST boolean fase true or false
GL_UNPACK_ROW_LENGTH | integer 0 [0,00)
GL_UNPACK_SKIP_ROWS integer 0 [0,0)
GL_UNPACK_SKIP_PIXELS integer 0 [0,00)
GL_UNPACK_ALIGNMENT integer 4 1,2,4,0r8

fglPixelStor ef can be used to set any pixel store parameter. |f the parameter type is boolean, then if param
is O, the parameter is false; otherwise it is set to true. If pname is a integer type parameter, param is
rounded to the nearest integer.

Likewise, fglPixelStorei can aso be used to set any of the pixel store parameters. Boolean parameters are
set to false if paramis 0 and true otherwise.

The pixel storage modes in effect when fglDrawPixels, fglReadPixels, fglTexImagelD, fglTexl mage2D,
fglTexSubl magelD, fgl TexSubl mage2D, fglBitmap, or fglPolygonStippleis placed in adisplay list con-
trol the interpretation of memory data. The pixel storage modes in effect when a display list is executed
are not significant.

Pixel storage modes are client state and must be pushed and restored using
fglPushClientAttrib and fglPopClientAttrib.

July 22, 1997

FGLPIXELSTORE() UNIX System V FGLPIXELSTORE()

ERRORS
GL_INVALID_ENUM isgenerated if pname is not an accepted value.

GL_INVALID_VALUE isgenerated if a negative row length, pixel skip, or row skip value is specified, or
if alignment is specified as other than 1, 2, 4, or 8.

GL_INVALID_OPERATION is generated if fglPixelStore is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_PACK_SWAP_BYTES
fglGet with argument GL_PACK _LSB FIRST
fglGet with argument GL_PACK_ROW_LENGTH
fglGet with argument GL_PACK_SKIP_ROWS
fglGet with argument GL_PACK_SKIP_PIXELS
fglGet with argument GL_PACK_ALIGNMENT
fglGet with argument GL_UNPACK_SWAP_BYTES
fglGet with argument GL_UNPACK _LSB_FIRST
fglGet with argument GL_UNPACK_ROW_LENGTH
fglGet with argument GL_UNPACK_SKIP_ROWS
fglGet with argument GL_UNPACK_SKIP_PIXELS
fglGet with argument GL_UNPACK_ALIGNMENT

SEE ALSO
fglBitmap, fglDrawPixels, fglPixelM ap, fglPixel Transfer, fglPixelZoom,
fglPolygonStipple, fglPushClientAttrib, fglReadPixels, fglTeximagelD, fglTexImage2D,
fglTexSubl magelD, fgl T exSubl mage2D

July 22, 1997 Page 4

FGLPIXELTRANSFER() UNIX System V FGLPIXELTRANSFER()

NAME

foglPixelTransferf, fglPixel Transferi — set pixel transfer modes

FORTRAN SPECIFICATION

SUBROUTINE fglPixel Transferf(INTEGER*4 pname,

REAL*4 param)
SUBROUTINE fglPixel Transferi(INTEGER* 4 pname,
INTEGER*4 param)
delim $$
PARAMETERS

pname Specifies the symbolic name of the pixel transfer parameter to be set. Must be one of the follow-
ing; GL_MAP_COLOR, GL_MAP_STENCIL, GL_INDEX_SHIFT, GL_INDEX_OFFSET,
GL_RED_SCALE, GL_RED_BIAS, GL_GREEN_SCALE, GL_GREEN_BIAS,
GL_BLUE_SCALE, GL_BLUE_BIAS, GL_ALPHA_SCALE, GL_ALPHA_BIAS,
GL_DEPTH_SCALE, or GL_DEPTH_BIAS.

param Specifies the value that pname is set to.

DESCRIPTION

Page 1

foglPixelTransfer sets pixel transfer modes that affect the operation of subsequent fglCopyPixels,
fglCopyTexImagelD, fglCopyTexImage2D, fglCopyTexSublmagelD, fglCopyTexSublmage2D,
fglDrawPixels, fglReadPixels, fglTeximagelD, fglTeximage2D, fglTexSublmagelD, and
fgl TexSublmage2D commands. The algorithms that are specified by pixel transfer modes operate on pix-
els after they are read from the frame buffer (fglCopyPixels fglCopyTexIlmagelD, fglCopyTexl mage2D,
fglCopyTexSublmagelD, fglCopyTexSublmage2D, and fglReadPixels), or unpacked from client
memory (fglDrawPixels, fgl TexlmagelD, fgl Texlmage2D, fgl TexSubl magelD, and
fgl TexSubl mage2D). Pixel transfer operations happen in the same order, and in the same manner, regard-
less of the command that resulted in the pixel operation. Pixel storage modes (see fglPixelStore) control
the unpacking of pixels being read from client memory, and the packing of pixels being written back into
client memory.

Pixel transfer operations handle four fundamental pixel types: color, color index, depth, and stencil. Color
pixels consist of four floating-point values with unspecified mantissa and exponent sizes, scaled such that O
represents zero intensity and 1 represents full intensity. Color indices comprise a single fixed-point value,
with unspecified precision to the right of the binary point. Depth pixels comprise a single floating-point
value, with unspecified mantissa and exponent sizes, scaled such that 0.0 represents the minimum depth
buffer value, and 1.0 represents the maximum depth buffer value. Finally, stencil pixels comprise asingle
fixed-point value, with unspecified precision to the right of the binary point.

The pixel transfer operations performed on the four basic pixel types are asfollows:

Color Each of the four color components is multiplied by a scale factor, then added to a bias fac-
tor. That is, the red component is multiplied by GL_RED_SCALE, then added to
GL_RED _BIAS; the green component is multiplied by GL_GREEN_SCALE, then added
to GL_GREEN_BIAS; the blue component is multiplied by GL_BLUE_SCALE, then
added to GL _BLUE BIAS, and the alpha component is multiplied by
GL_ALPHA_SCALE, then added to GL_ALPHA_BIAS. After al four color components
are scaled and biased, each is clamped to the range [0,1]. All color, scale, and bias values
are specified with fglPixel Transfer .

If GL_MAP_COLOR is true, each color component is scaled by the size of the
corresponding color-to-color map, then replaced by the contents of that map indexed by the
scaled component. That is, the red component is scaled by
GL_PIXEL_MAP_R_TO R_SIZE, then replaced by the contents of

July 22, 1997

FGLPIXELTRANSFER() UNIX System V FGLPIXELTRANSFER()

GL_PIXEL_MAP R T
GL_PIXEL_ MAP G T
GL_PIXEL_MAP_G TO_G indexed by itself. The blue component is scaled by
GL _PIXEL_MAP B TO B SIZE, then replaced by the contents of
GL_PIXEL_MAP_B TO_B indexed by itself. And the apha component is scaled by
GL_PIXEL_MAP_A TO A SIZE, then replaced by the contents of
GL_PIXEL_MAP_A_TO_A indexed by itself. All components taken from the maps are
then clamped to the range [0,1]. GL_MAP_COLOR is specified with fglPixel Transfer.
The contents of the various maps are specified with fglPixelM ap.

Colorindex Each color index is shifted left by GL_INDEX_SHIFT bits; any bits beyond the number of
fraction bits carried by the fixed-point index are filled with zeros. If GL_INDEX_SHIFT is
negative, the shift isto the right, again zero filled. Then GL_INDEX_OFFSET is added to
theindex. GL_INDEX_SHIFT and GL_INDEX_OFFSET are specified with
fglPixel Transfer.

From this point, operation diverges depending on the required format of the resulting pixels.
If the resulting pixels are to be written to a color index buffer, or if they are being read back
to client memory in GL_COLOR_INDEX format, the pixels continue to be treated as
indices. If GL_MAP_COLOR istrue, each index is masked by $2 sup n~-" 1$, where n
is GL_PIXEL MAP_| TO | SIZE, then replaced by the contents of
GL_PIXEL_MAP_|_TO_I indexed by the masked valuee. GL_MAP_COLOR is
specified with fglPixel Transfer. The contents of the index map is specified with fglPixel-
Map.

If the resulting pixels are to be written to an RGBA color buffer, or if they are read back to
client memory in aformat other than GL_COL OR_INDEX, the pixels are converted from
indices to colors by referencing the four maps GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_| TO G, GL_PIXEL_MAP_|_TO B, and
GL_PIXEL_MAP_| TO_A. Before being dereferenced, the index is masked by $2 sup n
7 1%, where n is GL_PIXEL_MAP_| TO_R_SIZE for the red map,
GL_PIXEL_MAP_|_TO_G_SIZE for the green map, GL_PIXEL_MAP_| TO B SIZE
for the blue map, and GL_PIXEL_MAP_I_TO_A_SIZE for the apha map. All com-
ponents taken from the maps are then clamped to the range [0,1]. The contents of the four
maps is specified with fglPixelM ap.

R indexed by itself. The green component is scaled by
G SIZE, then replaced by the contents of

O_
o)

Depth Each depth value is multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS,
then clamped to the range [0,1].
Stencil Each index is shifted GL_INDEX_SHIFT bits just as a color index is, then added to

GL_INDEX_OFFSET. If GL_MAP_STENCIL istrue, each index is masked by $2 sup n
"7 13, where n is GL_PIXEL_MAP_S TO_S SIZE, then replaced by the contents of
GL_PIXEL_MAP_S TO_Sindexed by the masked value.

The following table gives the type, initial value, and range of valid values for each of the pixel transfer
parameters that are set with fglPixel Transfer.

July 22, 1997 Page 2

FGLPIXELTRANSFER() UNIX System V FGLPIXELTRANSFER()

pname type initial value | valid range

GL_MAP_COLOR boolean false true/false

GL_MAP_STENCIL boolean false true/false
GL_INDEX_SHIFT integer 0 (~00,00)
GL_INDEX_OFFSET | integer 0 (~00,00)
GL_RED_SCALE float 1 (~00,00)
GL_GREEN_SCALE float 1 (~00,00)
GL_BLUE_SCALE float 1 (~00,00)
GL_ALPHA_SCALE float 1 (~00,00)
GL_DEPTH_SCALE float 1 (~00,00)
GL_RED_BIAS float 0 (~00,00)
GL_GREEN_BIAS float 0 (~00,00)
GL_BLUE_BIAS float 0 (~00,00)
GL_ALPHA_BIAS float 0 (~00,00)
GL_DEPTH_BIAS float 0 (~00,00)

foglPixelTransferf can be used to set any pixel transfer parameter. If the parameter type is boolean, 0
implies false and any other value implies true. If pname is an integer parameter, param is rounded to the
nearest integer.

Likewise, fglPixelTransferi can be used to set any of the pixel transfer parameters. Boolean parameters
are set to false if param is O and to true otherwise. param is converted to floating point before being
assigned to real-valued parameters.

NOTES
If a fglCopyPixels, fglCopyTexImagelD, fglCopyTeximage2D, fglCopyTexSublmagelD,
fglCopyTexSublmage2D, fglDrawPixels, fglReadPixels, fglTeximagelD, fglTexImage2D,
fglTexSublmagelD, or fglTexSublmage2D command is placed in a display list (see fgINewList and
fglCallList), the pixel transfer mode settings in effect when the display list is executed are the ones that are
used. They may be different from the settings when the command was compiled into the display list.

ERRORS
GL_INVALID_ENUM isgenerated if pnameis not an accepted value.

GL_INVALID_OPERATION is generated if fglPixelTransfer is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MAP_COLOR
fglGet with argument GL_MAP_STENCIL
fglGet with argument GL_INDEX_SHIFT
fglGet with argument GL_INDEX_OFFSET
fglGet with argument GL_RED_SCALE
fglGet with argument GL_RED_BIAS
fglGet with argument GL_GREEN_SCALE
fglGet with argument GL_GREEN_BIAS
fglGet with argument GL_BLUE_SCALE
fglGet with argument GL_BLUE_BIAS
fglGet with argument GL_ALPHA_SCALE
fglGet with argument GL_ALPHA_BIAS
fglGet with argument GL_DEPTH_SCALE
fglGet with argument GL_DEPTH_BIAS

SEE ALSO
fglCallList, fglCopyPixels, fglCopyTexImagelD, fglCopyTexlmage2D, fglCopyTexSublmagelD,
fglCopyTexSublmage2D, fglDrawPixels, fgINewList, fglPixelMap, fglPixelStore, fglPixedZoom,

Page 3 July 22, 1997

FGLPIXELTRANSFER() UNIX System V FGLPIXELTRANSFER()

fglReadPixels, fglTexI magelD, fgl Texl mage2D, fgl TexSubl magelD, fglTexSubl mage2D

July 22, 1997 Page 4

FGLPIXELZOOM () UNIX System V FGLPIXELZOOM ()

NAME
fglPixelZoom — specify the pixel zoom factors

FORTRAN SPECIFICATION
SUBROUTINE fglPixelZoom(REAL*4 xfactor,
REAL*4 yfactor)

delim $$

PARAMETERS
xfactor, yfactor
Specify the x and y zoom factors for pixel write operations.

DESCRIPTION
fglPixelZoom specifies values for the x and y zoom factors. During the execution of fglDrawPixels
or fglCopyPixels, if ($xr $, $yr $) is the current raster position, and a given element is in the mth row
and nth column of the pixel rectangle, then pixels whose centers are in the rectangle with corners at

($xr "+ n cdot "xfactor"$, $yr "+ m cdot "yfactor"$)
($xr "+ (n+1) cdot "xfactor"$, $yr "+~ (m+1) cdot "yfactor"$)

are candidates for replacement. Any pixel whose center lies on the bottom or left edge of this rectangular
region is aso modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the resulting image
about the current raster position.

ERRORS
GL_INVALID_OPERATION is generated if fglPixelZoom is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_ZOOM_X
fglGet with argument GL_ZOOM _Y

SEE ALSO
fglCopyPixels, fglDrawPixels

Page 1 July 22, 1997

FGLPOINTSIZE() UNIX System V FGLPOINTSIZE()

NAME

fglPointSize — specify the diameter of rasterized points

FORTRAN SPECIFICATION

SUBROUTINE fglPointSize(REAL*4 size)

delim $$

PARAMETERS

size Specifiesthe diameter of rasterized points. Theinitial valueis 1.

DESCRIPTION

NOTES

fglPointSize specifies the rasterized diameter of both aliased and antialiased points. Using a point size
other than 1 has different effects, depending on whether point antialiasing is enabled. To enable and dis-
able point antialiasing, call fglEnable and fgIDisable with argument GL_POINT_SMOOTH. Point
antialiasing isinitially disabled.

If point antialiasing is disabled, the actual size is determined by rounding the supplied size to the nearest
integer. (If the rounding resultsin the value O, it is asif the point size were 1.) If the rounded size is odd,
then the center point ($x $, $y $) of the pixel fragment that represents the point is computed as

($]"xsubw™| "+ 5% S| "ysubw”| "+ 59)

where w subscripts indicate window coordinates. All pixels that lie within the square grid of the
rounded size centered at ($ x $, $y $) make up the fragment. If the sizeis even, the center point is

($|"xsubw™+" 57|%$,$| "ysubw ™+ 57| $)

and the rasterized fragment’s centers are the half-integer window coordinates within the square of the
rounded size centered at ($x $, $y $). All pixel fragments produced in rasterizing a nonantialiased point
are assigned the same associated data, that of the vertex corresponding to the point.

If antialiasing is enabled, then point rasterization produces a fragment for each pixel square that intersects
the region lying within the circle having diameter equal to the current point size and centered at the point’s
($xsubw $, $y sub w $). The coverage value for each fragment is the window coordinate area of the
intersection of the circular region with the corresponding pixel square. Thisvalueis saved and used in the
final rasterization step. The data associated with each fragment is the data associated with the point being
rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is requested, the
nearest supported size is used. Only size 1 is guaranteed to be supported; others depend on the implemen-
tation. To query the range of supported sizes and the size difference between supported sizes within the
range, call fglGet with arguments GL_POINT_SIZE_RANGE and
GL_POINT_SIZE_GRANULARITY.

The point size specified by fglPointSize is always returned when GL_POINT_SIZE isqueried. Clamping
and rounding for aliased and antialiased points have no effect on the specified value.

A non-antialiased point size may be clamped to an implementation-dependent maximum. Although this
maximum cannot be queried, it must be no less than the maximum value for antialiased points, rounded to
the nearest integer value.

ERRORS

Page 1

GL_INVALID_VALUE isgenerated if sizeisless than or equal to O.

July 22, 1997

FGLPOINTSIZE() UNIX System V FGLPOINTSIZE()

GL_INVALID_OPERATION is generated if fglPointSize is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_POINT_SIZE
fglGet with argument GL_POINT_SIZE_RANGE
fglGet with argument GL_POINT_SIZE_GRANULARITY
fgll sEnabled with argument GL_POINT_SMOOTH

SEE ALSO
fglEnable

July 22, 1997 Page 2

FGLPOLY GONMODE() UNIX System V FGLPOLY GONMODE()

NAME
fglPolygonM ode — select a polygon rasterization mode

FORTRAN SPECIFICATION
SUBROUTINE fglPolygonM ode(INTEGER* 4 face,
INTEGER*4 mode)

PARAMETERS
face Specifies the polygons that mode applies to. Must be GL_FRONT for front-facing polygons,
GL_BACK for back-facing polygons, or GL_FRONT_AND_BACK for front- and back-facing
polygons.

mode
Specifies how polygons will be rasterized. Accepted values are GL_POINT, GL_LINE, and
GL_FILL. Theinitial valueisGL_FILL for both front- and back-facing polygons.

DESCRIPTION
fglPolygonM ode controls the interpretation of polygons for rasterization. face describes which polygons
mode applies to: front-facing polygons (GL_FRONT), back-facing polygons (GL_BACK), or both
(GL_FRONT_AND_BACK). The polygon mode affects only the final rasterization of polygons. In par-
ticular, a polygon’s vertices are lit and the polygon is clipped and possibly culled before these modes are
applied.
Three modes are defined and can be specified in mode:

GL_POINT Polygon vertices that are marked as the start of a boundary edge are drawn as points.
Point attributes such as GL_POINT_SIZE and GL_POINT_SMOOTH control the ras-
terization of the points. Polygon rasterization attributes other than
GL_POLYGON_MODE have no effect.

GL_LINE Boundary edges of the polygon are drawn as line segments. They are treated as con-
nected line segments for line stippling; the line stipple counter and pattern are not reset
between segments (see fglLineStipple). Line attributes such as GL_LINE_WIDTH and
GL_LINE_SMOOTH control the rasterization of the lines. Polygon rasterization attri-
butes other than GL_POL YGON_M ODE have no effect.

GL_FILL The interior of the polygon is filled. Polygon attributes such as
GL_POLYGON_STIPPLE and GL_POLYGON_SMOOTH control the rasterization
of the polygon.

EXAMPLES

To draw a surface with filled back-facing polygons and outlined front-facing polygons, call
glPolygonMode(GL_FRONT, GL_LINE);

NOTES
Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are generated internally by
the GL when it decomposes polygons; they can be set explicitly using fglEdgeFlag.

ERRORS
GL_INVALID_ENUM isgenerated if either face or mode is not an accepted value.

GL_INVALID_OPERATION is generated if fglPolygonMode is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_POLYGON_MODE

SEE ALSO
fglBegin, fglEdgeFlag, fglL ineStipple, fglLineWidth, fglPointSize, fglPolygonStipple

Page 1 July 22, 1997

FGLPOLY GONOFFSET () UNIX System V FGLPOLY GONOFFSET ()

NAME
fglPolygonOffset — set the scale and units used to calculate depth values

FORTRAN SPECIFICATION
SUBROUTINE fglPolygonOffset(REAL* 4 factor,

REAL*4 units)
delim $$
PARAMETERS
factor Specifies a scale factor that is used to create a variable depth offset for each polygon. The initial
valueisO.

units Is multiplied by an implementation-specific value to create a constant depth offset. The initial value
isO.
DESCRIPTION
When GL_POL YGON_OFFSET is enabled, each fragment’s depth value will be offset after it isinterpo-
lated from the depth values of the appropriate vertices. The value of the offset is $'factor" ™~ DZ ~+ r
7 "units'$, where $DZ"$ is a measurement of the change in depth relative to the screen area of the
polygon, and r is the smallest value that is guaranteed to produce a resolvable offset for a given imple-
mentation. The offset is added before the depth test is performed and before the value is written into the
depth buffer.

fglPolygonOffset is useful for rendering hidden-line images, for applying decals to surfaces, and for
rendering solids with highlighted edges.

NOTES
fglPolygonOffset isavailable only if the GL versionis 1.1 or greater.

fglPolygonOffset has no effect on depth coordinates placed in the feedback buffer.
fglPolygonOffset has no effect on selection.

ERRORS
GL_INVALID_OPERATION is generated if fglPolygonOffset is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fgllsEnabled with argument GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT.

fglGet with argument GL_POLYGON_OFFSET_FACTOR or GL_POLYGON_OFFSET_UNITS.

SEE ALSO
fglDepthFunc, fglDisable, fglEnable, fglGet, fgll sEnabled, fglLineWidth, fglStencilOp, fgl TexEnv

Page 1 July 22, 1997

FGLPOLY GONSTIPPLE() UNIX System V FGLPOLY GONSTIPPLE()

NAME

fglPolygonStipple — set the polygon stippling pattern

FORTRAN SPECIFICATION

SUBROUTINE fglPolygonStipple{ CHARACTER* 256 mask)

delim $$

PARAMETERS

mask Specifies a pointer to a $32 times 32$ stipple pattern that will be unpacked from memory in the same
way that fglDrawPixels unpacks pixels.

DESCRIPTION

Polygon stippling, like line stippling (see fglLineStipple), masks out certain fragments produced by rasteri-
zation, creating a pattern. Stippling isindependent of polygon antiaiasing.

mask is a pointer to a $32 times 32$ stipple pattern that is stored in memory just like the pixel data supplied
to a fglDrawPixels call with height and width both equal to 32, a pixel format of GL_COL OR_INDEX,
and datatype of GL_BITMAP. That is, the stipple pattern is represented as a $32 times 32$ array of 1-bit
color indices packed in unsigned bytes. fglPixelStore parameters like GL_UNPACK_SWAP_BYTES
and GL_UNPACK _L SB FIRST affect the assembling of the bits into a stipple pattern. Pixel transfer
operations (shift, offset, pixel map) are not applied to the stipple image, however.

To enable and disable polygon stippling, cal fglEnable and fglDisable with argument
GL_POLYGON_STIPPLE. Polygon stippling is initialy disabled. If it's enabled, a rasterized polygon
fragment with window coordinates $x sub w$ and $y sub w$ is sent to the next stage of the GL if and only
if the ($x sub wroman mod™32$)th bit in the ($y sub wroman mod™32$)th row of the stipple pattern is 1
(one). When polygon stippling is disabled, it isasif the stipple pattern consistsof all 1's.

ERRORS

GL_INVALID_OPERATION is generated if fglPolygonStipple is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGetPolygonStipple
fgll sEnabled with argument GL_POLYGON_STIPPLE

SEE ALSO

Page 1

foglDrawPixels, fglLineStipple, fglPixelStore, fglPixel Transfer

July 22, 1997

FGLPRIORITIZETEXTURES() UNIX System V FGLPRIORITIZETEXTURES()

NAME
folPrioritizeT extures — set texture residence priority

FORTRAN SPECIFICATION
SUBROUTINE fglPrioritizeT extures(INTEGER*4 n,
CHARACTER* 8 textures,
CHARACTER*8 priorities)

PARAMETERS
n Specifies the number of textures to be prioritized.

textures Specifies an array containing the names of the textures to be prioritized.

priorities Specifies an array containing the texture priorities. A priority given in an element of priorities
applies to the texture named by the corresponding element of textures.

DESCRIPTION
fglPrioritizeT extur es assigns the n texture priorities given in priorities to the n textures named in textures.

The GL establishes a ‘‘working set’” of textures that are resident in texture memory. These textures may
be bound to a texture target much more efficiently than textures that are not resident. By specifying a
priority for each texture, fglPrioritizeTextures allows applications to guide the GL implementation in
determining which textures should be resident.

The priorities given in priorities are clamped to the range [0,1] before they are assigned. O indicates the
lowest priority; textures with priority O are least likely to be resident. 1 indicates the highest priority; tex-
tures with priority 1 are most likely to be resident. However, textures are not guaranteed to be resident
until they are used.

folPrioritizeTextures silently ignores attempts to prioritize texture O, or any texture name that does not
correspond to an existing texture.

folPrioritizeT extur es does not require that any of the textures named by textures be bound to a texture tar-
get. fglTexParameter may also be used to set a texture's priority, but only if the texture is currently
bound. Thisisthe only way to set the priority of a default texture.

NOTES
folPrioritizeTexturesisavailable only if the GL versionis 1.1 or greater.

ERRORS
GL_INVALID_VALUE isgenerated if nisnegative.

GL_INVALID_OPERATION isgenerated if fglPrioritizeTextures is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
folGetTexParameter with parameter name GL_TEXTURE_PRIORITY retrieves the priority of a
currently bound texture.

SEE ALSO
foglAreTexturesResident, fglBindTexture, fglCopyTexImagelD, fglCopyTexI mage2D,
fglTeximagelD, fgl Texl mage2D, fgl T exParameter

Page 1 July 22, 1997

FGLPUSHATTRIB() UNIX System V FGLPUSHATTRIB()

NAME
fglPushAttrib, fglPopAttrib — push and pop the server attribute stack

FORTRAN SPECIFICATION
SUBROUTINE fglPushAttrib(INTEGER*4 mask)

PARAMETERS
mask Specifies a mask that indicates which attributes to save. Values for mask are listed below.

FORTRAN SPECIFICATION
SUBROUTINE fglPopAttrib()

DESCRIPTION
fglPushAttrib takes one argument, a mask that indicates which groups of state variables to save on the
attribute stack. Symbolic constants are used to set bits in the mask. mask is typically constructed by
ORing several of these constants together. The special mask GL_ALL_ATTRIB_BITS can be used to
save al stackable states.

The symbolic mask constants and their associated GL state are as follows (the second column lists which
attributes are saved):

GL_ACCUM_BUFFER BIT Accumulation buffer clear value

GL_COLOR_BUFFER_BIT GL_ALPHA_TEST enable hit
Alphatest function and reference value
GL_BLEND enable bit
Blending source and destination functions
Constant blend color
Blending equation
GL_DITHER enable bit
GL_DRAW_BUFFER setting
GL_COLOR_LOGIC_OP enable hit
GL_INDEX_LOGIC_OP enable bit
Logic op function
Color mode and index mode clear values
Color mode and index mode writemasks

GL_CURRENT_BIT Current RGBA color
Current color index
Current normal vector
Current texture coordinates
Current raster position
GL_CURRENT_RASTER_POSITION_VALID flag
RGBA color associated with current raster position
Color index associated with current raster position
Texture coordinates associated with current raster position
GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT GL_DEPTH_TEST enable bit

Depth buffer test function
Depth buffer clear value

Page 1 July 22, 1997

FGLPUSHATTRIB()

GL_ENABLE BIT

GL_EVAL _BIT

GL_FOG BIT

GL_HINT BIT

July 22, 1997

UNIX System V FGLPUSHATTRIB()

GL_DEPTH_WRITEMASK enable bit

GL_ALPHA_TEST flag
GL_AUTO_NORMAL flag

GL_BLEND flag

Enable bits for the user-definable clipping planes
GL_COLOR_MATERIAL
GL_CULL_FACE flag

GL_DEPTH_TEST flag

GL_DITHER flag

GL_FOG flag

GL _LIGHTi where0<=i<GL_MAX LIGHTS
GL_LIGHTING flag

GL_LINE_SMOOTH flag
GL_LINE_STIPPLE flag
GL_COLOR_LOGIC_OPflag
GL_INDEX_LOGIC_OPflag

GL_MAP1 xwherexisamap type
GL_MAP2_x where x isamap type
GL_NORMALIZE flag
GL_POINT_SMOOTH flag
GL_POLYGON_OFFSET_LINE flag
GL_POLYGON_OFFSET_FILL flag
GL_POLYGON_OFFSET_POINT flag
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE flag
GL_SCISSOR_TEST flag
GL_STENCIL_TEST flag
GL_TEXTURE_1D flag

GL_TEXTURE_2D flag
FlagsGL_TEXTURE_GEN_xwherexisS, T, R, or Q

GL_MAP1 x enable bits, where x is a map type
GL_MAP2_x enable bits, where x is a map type
1D grid endpoints and divisions

2D grid endpoints and divisions
GL_AUTO_NORMAL enable bit

GL_FOG enable bit

Fog color

Fog density

Linear fog start

Linear fog end

Fog index
GL_FOG_MODE vaue

GL_PERSPECTIVE_CORRECTION_HINT setting
GL_POINT_SMOOTH_HINT setting
GL_LINE_SMOOTH_HINT setting
GL_POLYGON_SMOOTH_HINT setting

Page 2

FGLPUSHATTRIB() UNIX System V FGLPUSHATTRIB()

GL_FOG_HINT setting

GL_LIGHTING_BIT GL_COLOR_MATERIAL enable hit
GL_COLOR_MATERIAL_FACE vaue
Color material parameters that are tracking the current color
Ambient scene color
GL_LIGHT_MODEL_LOCAL_VIEWER value
GL_LIGHT_MODEL_TWO_SIDE setting
GL_LIGHTING enable hit
Enable bit for each light
Ambient, diffuse, and specular intensity for each light
Direction, position, exponent, and cutoff angle for each light
Constant, linear, and quadratic attenuation factors for each light
Ambient, diffuse, specular, and emissive color for each material
Ambient, diffuse, and specular color indices for each material
Specular exponent for each material
GL_SHADE_MODEL setting

GL_LINE_BIT GL_LINE_SMOOTH flag
GL_LINE_STIPPLE enable bit
Line stipple pattern and repeat counter

Linewidth
GL_LIST BIT GL_LIST_BASE setting
GL_PIXEL _MODE_BIT GL_RED _BIASand GL_RED_SCALE settings

GL_GREEN_BIASand GL_GREEN_SCALE values
GL_BLUE_BIASand GL_BLUE_SCALE
GL_ALPHA BIASand GL_ALPHA_SCALE
GL_DEPTH_BIASand GL_DEPTH_SCALE
GL_INDEX_OFFSET and GL_INDEX_SHIFT values
GL_MAP_COLOR and GL_MAP_STENCIL flags
GL_ZOOM _X and GL_ZOOM _Y factors
GL_READ_BUFFER setting

GL_POINT BIT GL_POINT_SMOOTH flag
Point size
GL_POLYGON BIT GL_CULL_FACE enable bit

GL_CULL_FACE_MODE vaue
GL_FRONT_FACE indicator
GL_POLYGON_MODE setting
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE enable bit
GL_POLYGON_OFFSET_FILL flag
GL_POLYGON_OFFSET_LINE flag
GL_POLYGON_OFFSET_POINT flag
GL_POLYGON_OFFSET_FACTOR
GL_POLYGON_OFFSET_UNITS

Page 3 July 22, 1997

FGLPUSHATTRIB() UNIX System V FGLPUSHATTRIB()

GL_POLYGON_STIPPLE_BIT Polygon stipple image

GL_SCISSOR _BIT GL_SCISSOR_TEST flag
Scissor box

GL_STENCIL_BUFFER BIT GL_STENCIL_TEST enable bit
Stencil function and reference value
Stencil value mask
Stencil fail, pass, and depth buffer pass actions
Stencil buffer clear value
Stencil buffer writemask

GL _TEXTURE_BIT Enable bits for the four texture coordinates
Border color for each texture image
Minification function for each texture image
Magnification function for each texture image
Texture coordinates and wrap mode for each texture image
Color and mode for each texture environment
Enable bitsGL_TEXTURE_GEN _x, xisS, T, R, and Q
GL_TEXTURE_GEN_MODE settingfor S, T, R, and Q
fgl TexGen plane equationsfor S, T, R, and Q
Current texture bindings (for example, GL_TEXTURE_2D_BINDING)

GL_TRANSFORM_BIT Coefficients of the six clipping planes
Enable bits for the user-definable clipping planes
GL_MATRIX_MODE vaue
GL_NORMALIZE flag

GL_VIEWPORT_BIT Depth range (near and far)
Viewport origin and extent

fglPopAttrib restores the values of the state variables saved with the last
fglPushAttrib command. Those not saved are left unchanged.

It is an error to push attributes onto a full stack, or to pop attributes off an empty stack. In either case, the
error flag is set and no other change is made to GL state.

Initially, the attribute stack is empty.

NOTES
Not all values for GL state can be saved on the attribute stack. For example, render mode state, and select
and feedback state cannot be saved. Client state must be saved with fglPushClientAttrib.

The depth of the attribute stack depends on the implementation, but it must be at least 16.

ERRORS
GL_STACK_OVERFLOW isgenerated if fglPushAttrib is called while the attribute stack isfull.

GL_STACK_UNDERFLOW isgenerated if fglPopAttrib is called while the attribute stack is empty.

GL_INVALID_OPERATION is generated if fglPushAttrib or fglPopAttrib is executed between the
execution of fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_ATTRIB_STACK_DEPTH
fglGet with argument GL_MAX_ATTRIB_STACK_DEPTH

July 22, 1997 Page 4

FGLPUSHATTRIB() UNIX System V FGLPUSHATTRIB()

SEE ALSO
folGet, fglGetClipPlane, fglGetError, fglGetLight, fglGetM ap, fglGetM aterial,
folGetPixelM ap, fglGetPolygonStipple, fglGetString, fglGetTexEnv, fglGetTexGen, fglGetTexl mage,
fglGetTexL evelParameter, fglGet T exPar ameter, fgll sEnabled, fglPushClientAttrib

Page 5 July 22, 1997

FGLPUSHCLIENTATTRIB() UNIX System V FGLPUSHCLIENTATTRIB()

NAME
fglPushClientAttrib, fglPopClientAttrib — push and pop the client attribute stack

FORTRAN SPECIFICATION
SUBROUTINE fglPushClientAttrib(INTEGER*4 mask)

PARAMETERS
mask Specifies amask that indicates which attributes to save. Values for mask are listed below.

FORTRAN SPECIFICATION
SUBROUTINE fglPopClientAttrib()

DESCRIPTION
fglPushClientAttrib takes one argument, a mask that indicates which groups of client-state variables to
save on the client attribute stack. Symbolic constants are used to set bits in the mask. mask is typicaly
constructed by OR’ing severa of these constants together. The speciad mask
GL_CLIENT_ALL_ATTRIB_BITS can be used to save al stackable client state.

The symbolic mask constants and their associated GL client state are as follows (the second column lists
which attributes are saved):

GL_CLIENT_PIXEL_STORE_BIT Pixel storage modes
GL_CLIENT_VERTEX_ARRAY BIT Vertex arrays (and enables)

fglPopClientAttrib restores the values of the client-state variables saved with the last fglPushClientAt-
trib. Those not saved are left unchanged.

It is an error to push attributes onto a full client attribute stack, or to pop attributes off an empty stack. In
either case, the error flag is set, and no other change is made to GL state.

Initially, the client attribute stack is empty.

NOTES
fglPushClientAttrib isavailable only if the GL versionis 1.1 or greater.

Not all values for GL client state can be saved on the attribute stack. For example, select and feedback
state cannot be saved.

The depth of the attribute stack depends on the implementation, but it must be at least 16.

Use fglPushAttrib and fglPopAttrib to push and restore state which is kept on the server. Only pixel
storage modes and vertex array state may be pushed and popped with fglPushClientAttrib and fglPop-
ClientAttrib.

ERRORS
GL_STACK_OVERFLOW isgenerated if fglPushClientAttrib is called while the attribute stack isfull.

GL_STACK_UNDERFLOW is generated if fglPopClientAttrib is caled while the attribute stack is
empty.
ASSOCIATED GETS

fglGet with argument GL_ATTRIB_STACK_DEPTH
fglGet with argument GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

SEE ALSO
fglColor Pointer, fglDisableClientState, fglEdgeFlagPointer, fglEnableClientState, fglGet, fglGetEr-
ror, fgllndexPointer, fglINormalPointer, fgINewList, fglPixelStore, fglPushAttrib, fglTexCoord-
Pointer, fglVertexPointer

Page 1 July 22, 1997

FGLPUSHMATRIX () UNIX System V FGLPUSHMATRIX ()

NAME
fglPushMatrix, fglPopMatrix — push and pop the current matrix stack

FORTRAN SPECIFICATION
SUBROUTINE fglPushMatrix()

FORTRAN SPECIFICATION
SUBROUTINE fglPopMatrix()

DESCRIPTION
There isa stack of matrices for each of the matrix modes. In GL_MODEL VIEW mode, the stack depth is
at least 32. In the other two modes, GL_PROJECTION and GL_TEXTURE, the depth isat least 2. The
current matrix in any mode is the matrix on the top of the stack for that mode.

fglPushMatrix pushes the current matrix stack down by one, duplicating the current matrix. That is, after
afglPushMatrix call, the matrix on top of the stack isidentical to the one below it.

fglPopMatrix pops the current matrix stack, replacing the current matrix with the one below it on the
stack.

Initially, each of the stacks contains one matrix, an identity matrix.

It is an error to push a full matrix stack, or to pop a matrix stack that contains only a single matrix. In
either case, the error flag is set and no other change is made to GL state.

ERRORS
GL_STACK_OVERFLOW isgenerated if fglPushMatrix is called while the current matrix stack isfull.

GL_STACK_UNDERFLOW is generated if fglPopMatrix is called while the current matrix stack con-
tains only a single matrix.

GL_INVALID_OPERATION is generated if fglPushMatrix or fglPopMatrix is executed between the
execution of fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE
fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX
fglGet with argument GL_MODELVIEW_STACK_DEPTH
fglGet with argument GL_PROJECTION_STACK_DEPTH
fglGet with argument GL_TEXTURE_STACK_DEPTH
fglGet with argument GL_MAX_MODELVIEW_STACK_DEPTH
fglGet with argument GL_MAX_PROJECTION_STACK_DEPTH
fglGet with argument GL_MAX_TEXTURE_STACK_DEPTH

SEE ALSO
fglFrustum, fglLoadldentity, fglLoadMatrix, fgiMatrixMode, fgiIMultMatrix, fglOrtho, fglRotate,
fglScale, fglTrandlate, fglViewport

Page 1 July 22, 1997

FGLPUSHNAME() UNIX System V FGLPUSHNAME()

NAME

fglPushName, fglPopName — push and pop the name stack

FORTRAN SPECIFICATION

SUBROUTINE fglPushName(INTEGER*4 name)

PARAMETERS

name Specifies a name that will be pushed onto the name stack.

FORTRAN SPECIFICATION

SUBROUTINE fglPopName()

DESCRIPTION

The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers and isinitially empty.

fglPushName causes name to be pushed onto the name stack. fglPopName pops one name off the top of
the stack.

The maximum name stack depth is implementation-dependent; call GL_MAX_NAME_STACK_DEPTH
to find out the value for a particular implementation. It is an error to push a name onto a full stack, or to
pop a name off an empty stack. It isalso an error to manipulate the name stack between the execution of
fglBegin and the corresponding execution of fglEnd. In any of these cases, the error flag is set and no
other change is made to GL state.

The name stack is aways empty while the render mode is not GL_SELECT. Calls to fglPushName or
fglPopName while the render modeisnot GL_SELECT are ignored.

ERRORS

GL_STACK_OVERFLOW isgenerated if fglPushName is called while the name stack is full.
GL_STACK_UNDERFLOW isgenerated if fglPopName is called while the name stack is empty.

GL_INVALID_OPERATION isgenerated if fglPushName or fglPopName is executed between a call to
fglBegin and the corresponding call to fglEnd.

ASSOCIATED GETS

fglGet with argument GL_NAME_STACK_DEPTH
fglGet with argument GL_MAX_NAME_STACK_DEPTH

SEE ALSO

Page 1

fgll nitNames, fglL oadName, fglRender M ode, fgl SelectBuffer

July 22, 1997

FGLRASTERPOS() UNIX System V FGLRASTERPOS()

NAME

fglRasterPos2d, fglRaster Pos2f, fglRasterPos2i, fglRasterPos2s, fglRaster Pos3d, fglRaster Pos3f,
fglRaster Pos3i, fglRasterPos3s, fglRasterPosdd, fglRaster PosAf, fglRaster Posdi, fglRaster Posds,
fglRaster Pos2dv, fglRaster Pos2fv, fglRaster Pos2iv, fglRaster Pos2sv, fglRaster Pos3dv,
fglRaster Pos3fv, fglRaster Pos3iv, fglRaster Pos3sv, fglRaster Pos4dv, fglRaster PosAfv,
fglRaster Podiv, fglRaster PosAsv — specify the raster position for pixel operations

FORTRAN SPECIFICATION

SUBROUTINE fglRaster Pos2d(REAL*8 x,
REAL*8Y)
SUBROUTINE fglRaster Pos2f(REAL*4 x,
REAL*4vy)
SUBROUTINE fglRaster Pos2i(INTEGER*4 x,
INTEGER*4y)
SUBROUTINE fglRaster Pos2s(INTEGER*2 x,
INTEGER*2y)
SUBROUTINE fglRaster Pos3d(REAL*8 x,
REAL*8Y,
REAL*82)
SUBROUTINE fglRaster Pos3f(REAL*4 x,
REAL*4y,
REAL*4 z)
SUBROUTINE fglRaster Pos3i(INTEGER*4 x,
INTEGER* 4y,
INTEGER*4 2)
SUBROUTINE fglRaster Pos3s(INTEGER*2 x,
INTEGER*2y,
INTEGER*2 z)
SUBROUTINE fglRaster Posdd(REAL*8 x,
REAL*8Y,
REAL*8z,
REAL*8w)
SUBROUTINE fglRaster Pos4f(REAL*4 x,
REAL*4y,
REAL*4 z,
REAL*4w)
SUBROUTINE fglRaster Posdi(INTEGER*4 x,
INTEGER* 4y,
INTEGER*4 Z,
INTEGER* 4 w)
SUBROUTINE fglRaster Posds(INTEGER*2 x,
INTEGER*2y,
INTEGER*2 2,
INTEGER*2 w)

delim $$

PARAMETERS

XY, Z, W
Specify the x, y, $23, and Sw$ object coordinates (if present) for the raster position.

FORTRAN SPECIFICATION

Page 1

SUBROUTINE fglRaster Pos2dv(CHARACTER*8 V)

July 22, 1997

FGLRASTERPOS() UNIX System V FGLRASTERPOS()

SUBROUTINE fglRaster Pos2fv(CHARACTER*8v)
SUBROUTINE fglRaster Pos2iv(CHARACTER*8 V)
SUBROUTINE fglRaster Pos2sv(CHARACTER*8 V)
SUBROUTINE fglRaster Pos3dv(CHARACTER*8 V)
SUBROUTINE fglRaster Pos3fv(CHARACTER*8v)
SUBROUTINE fglRaster Pos3iv(CHARACTER*8 V)
SUBROUTINE fglRaster Pos3sv(CHARACTER*8 V)
SUBROUTINE fglRaster Pos4dv(CHARACTER*8 V)
SUBROUTINE fglRaster Pos4fv(CHARACTER*8v)
SUBROUTINE fglRaster Posdiv(CHARACTER*8 V)
SUBROUTINE fglRaster Pos4sv(CHARACTER*8 V)

PARAMETERS
v Specifies a pointer to an array of two, three, or four elements, specifying x, y, z, and w
coordinates, respectively.

DESCRIPTION
The GL maintains a 3D position in window coordinates. This position, called the raster position, is used to
position pixel and bitmap write operations. It is maintained with subpixel accuracy. See fgIBitmap,
fglDrawPixels, and fglCopyPixels.

The current raster position consists of three window coordinates (x, y, z), a clip coordinate value
(3w$), an eye coordinate distance, a valid bit, and associated color data and texture coordinates. The w
coordinate is a clip coordinate, because w is not projected to window coordinates. fglRaster Pos4
specifies object coordinates x, y, z, and w explicitly. fglRaster Pos3 specifies object coordinate
x, y, and z explicitly, while w isimplicitly set to 1. fglRaster Pos2 uses the argument values for
x and y while implicitly setting z and w to 0 and 1.

The object coordinates presented by fglRaster Pos are treated just like those of a fglVertex command:
They are transformed by the current modelview and projection matrices and passed to the clipping stage.
If the vertex is not culled, then it is projected and scaled to window coordinates, which become the new
current raster position, and the GL_CURRENT_RASTER_POSITION_VALID flag is set. If the vertex
isculled, then the valid bit is cleared and the current raster position and associated color and texture coordi-
nates are undefined.

The current raster position also includes some associated color data and texture coordinates. If lighting is
enabled, then GL_CURRENT_RASTER_COLOR (in RGBA mode) or
GL_CURRENT_RASTER_INDEX (in color index mode) is set to the color produced by the lighting cal-
culation (see fglLight, fglLightM odel, and

fglShadeModel). If lighting is disabled, current color (in RGBA mode, state variable
GL_CURRENT_COLOR) or color index (in color index mode, state variable GL_ CURRENT_INDEX)
is used to update the current raster color.

Likewise, GL_CURRENT_RASTER_TEXTURE_COORDS is wupdated as a function of
GL_CURRENT_TEXTURE_COORDS, hased on the texture matrix and the texture generation functions
(see fglTexGen). Findly, the distance from the origin of the eye coordinate system to the vertex as
transformed by only the modelview matrix replaces GL_CURRENT_RASTER_DISTANCE.

Initially, the current raster position is (0, 0, 0, 1), the current raster distance is O, the valid bit is set, the
associated RGBA color is (1, 1, 1, 1), the associated color index is 1, and the associated texture coordinates
are (0,0, 0, 1). In RGBA mode, GL_CURRENT_RASTER_INDEX is aways 1; in color index mode,
the current raster RGBA color always maintainsitsinitial value.

NOTES
The raster position is modified both by fglRaster Pos and by fglBitmap.

July 22, 1997 Page 2

FGLRASTERPOS() UNIX System V FGLRASTERPOS()

When the raster position coordinates are invalid, drawing commands that are based on the raster position
areignored (that is, they do not result in changesto GL state).

Cdling fglDrawElements may |eave the current color or index indeterminate. |f fglRaster Pos is executed
while the current color or index is indeterminate, the current raster color or current raster index remains
indeterminate.

To set avalid raster position outside the viewport, first set a valid raster position, then call fglBitmap with
NULL asthe bitmap parameter.

ERRORS

GL_INVALID_OPERATION is generated if fglRaster Pos is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGet with argument GL_CURRENT_RASTER_POSITION

fglGet with argument GL_CURRENT_RASTER_POSITION_VALID
fglGet with argument GL_CURRENT_RASTER_DISTANCE

fglGet with argument GL_CURRENT_RASTER_COLOR

fglGet with argument GL_CURRENT_RASTER_INDEX

fglGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS

SEE ALSO

Page 3

fglBitmap, fglCopyPixels, fglDrawElements, fglDrawPixels, fglLight, fglLightM odel, fglShadeM odel,
fglTexCoord, fglTexGen, fglVertex

July 22, 1997

FGLREADBUFFER() UNIX System V FGLREADBUFFER()

NAME
fglReadBuffer — select a color buffer source for pixels

FORTRAN SPECIFICATION
SUBROUTINE fglReadBuffer (INTEGER*4 mode)

PARAMETERS
mode Specifies a color buffer. Accepted values are GL_FRONT_LEFT, GL_FRONT_RIGHT,
GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT,
and GL_AUXi, wherei isbetween 0 and GL_AUX_BUFFERS-1.

DESCRIPTION
fglReadBuffer specifies a color buffer as the source for subsequent fglReadPixels, fglCopyTexl magelD,
fglCopyTexlmage2D, fglCopyTexSublmagelD, fglCopyTexSublmage2D, and fglCopyPixels com-
mands. mode accepts one of twelve or more predefined values. (GL_AUXO through GL_AUX3 are
aways defined.) In a fully configured system, GL_FRONT, GL_LEFT, and GL_FRONT_LEFT all
name the front left buffer, GL_FRONT_RIGHT and GL_RIGHT name the front right buffer, and
GL_BACK_LEFT and GL_BACK name the back left buffer.

Nonstereo double-buffered configurations have only a front left and a back left buffer. Single-buffered
configurations have a front left and a front right buffer if stereo, and only a front left buffer if nonstereo. It
isan error to specify a nonexistent buffer to fglReadBuffer.

mode is initiadly GL_FRONT in single-buffered configurations, and GL_BACK in double-buffered
configurations.

ERRORS
GL_INVALID_ENUM isgenerated if mode is not one of the twelve (or more) accepted values.

GL_INVALID_OPERATION isgenerated if mode specifies a buffer that does not exist.

GL_INVALID_OPERATION isgenerated if fglReadBuffer is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_READ_BUFFER

SEE ALSO
fglCopyPixels, fglCopyTexIlmagelD, fglCopyTexI mage2D, fglCopyTexSublmagelD,
fglCopyTexSublmage2D, fglDrawBuffer, fglReadPixels

Page 1 July 22, 1997

FGLREADPIXELS() UNIX System V FGLREADPIXELS()

NAME

fglReadPixels — read a block of pixels from the frame buffer

FORTRAN SPECIFICATION

SUBROUTINE fglReadPixels(INTEGER*4 X,

INTEGER*4 Yy,
INTEGER* 4 width,
INTEGER*4 height,
INTEGER* 4 format,
INTEGER* 4 type,
CHARACTER*8 pixels)

delim $$

PARAMETERS
Xy

Specify the window coordinates of the first pixel that isread from the frame buffer. Thislocation isthe
lower left corner of arectangular block of pixels.

width, height
Specify the dimensions of the pixel rectangle. width and height of one correspond to asingle pixel.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type
Specifies the data type of the pixel data. Must be one of GL_UNSIGNED BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, or
GL_FLOAT.

pixels
Returns the pixel data.

DESCRIPTION

Page 1

fglReadPixels returns pixel data from the frame buffer, starting with the pixel whose lower left corner is at
location (x,), into client memory starting at location pixels. Severa parameters control the processing of
the pixel data before it is placed into client memory. These parameters are set with three commands:
fglPixelStore, fglPixel Transfer, and fglPixelMap. This reference page describes the effects on fglRead-
Pixels of most, but not all of the parameters specified by these three commands.

fglReadPixels returns values from each pixel with lower left corner at (x + i, y + j) for 0<i<width
and O<j<height. This pixel is said to be the ith pixel in the jth row. Pixels are returned in row order
from the lowest to the highest row, left to right in each row.

format specifies the format for the returned pixel values; accepted values are:

GL_COLOR_INDEX
Color indices are read from the color buffer selected by fglReadBuffer. Each index is con-
verted to fixed point, shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If GL_MAP_COLOR s
GL_TRUE, indices are replaced by their mappingsinthetable GL_PIXEL_MAP_|I _TO_I.

GL_STENCIL_INDEX
Stencil values are read from the stencil buffer. Each index is converted to fixed point, shifted
left or right depending on the value and sign of GL _INDEX_SHIFT, and added to

July 22, 1997

FGLREADPIXELS() UNIX System V FGLREADPIXELS()

GL_INDEX_OFFSET. If GL_MAP_STENCIL isGL_TRUE, indices are replaced by their
mappingsinthetable GL_PIXEL_MAP_S TO_S.

GL_DEPTH_COMPONENT
Depth values are read from the depth buffer. Each component is converted to floating point
such that the minimum depth value maps to 0 and the maximum value mapsto 1. Each com-
ponent is then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and finally
clamped to the range [0,1].

GL_RED
GL_GREEN
GL_BLUE
GL_ALPHA
GL_RGB
GL_RGBA
GL_LUMINANCE

GL_LUMINANCE_ALPHA

Processing differs depending on whether color buffers store color indices or RGBA color com-
ponents. If color indices are stored, they are read from the color buffer selected by fglRead-
Buffer. Eachindex is converted to fixed point, shifted left or right depending on the value and
sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. Indices are then replaced
by the red, green, blue, and apha vaues obtained by indexing the tables
GL _ PIXEL_ MAP | TO R, GL_PIXEL_ MAP | TO G, GL_PIXEL_MAP_| TO_ B,
and GL_PIXEL_MAP_I_TO_A. Each table must be of size 2°n, but n may be different for
different tables. Before an index is used to look up a value in a table of size 2°n, it must be
masked against 2°n-1.

If RGBA color components are stored in the color buffers, they are read from the color buffer
selected by fglReadBuffer. Each color component is converted to floating point such that
zero intensity mapsto 0.0 and full intensity mapsto 1.0. Each component is then multiplied by
GL_c SCALE and added to GL_c_BIAS, where ¢ is RED, GREEN, BLUE, or ALPHA.
Finally, if GL_MAP_COLOR is GL_TRUE, each component is clamped to the range [0,1],
scaled to the size of its corresponding table, and is then replaced by its mapping in the table
GL _PIXEL_MAP c TO c,wherecisR, G, B, or A.

Unneeded data is then discarded. For example, GL_RED discards the green, blue, and alpha
components, while GL_RGB discards only the alpha component. GL_LUMINANCE com-
putes a single-component value as the sum of the red, green, and blue components, and
GL_LUMINANCE_ALPHA does the same, while keeping alpha as a second vaue. The
final values are clamped to the range [0,1].

The shift, scale, bias, and lookup factors just described are all specified by
fglPixelTransfer. The lookup table contents themselves are specified by fglPixelM ap.

Finally, the indices or components are converted to the proper format, as specified by type. If format is
GL_COLOR_INDEX or GL_STENCIL_INDEX and type is not GL_FLOAT, each index is masked
with the mask value given in the following table. If typeis GL_FLOAT, then each integer index is con-
verted to single-precision floating-point format.

If format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
GL_LUMINANCE, or GL_LUMINANCE_ALPHA and type is not GL_FLOAT, each component is
multiplied by the multiplier shown in the following table. If typeis GL_FL OAT, then each component is
passed as is (or converted to the client’s single-precision floating-point format if it is different from the one
used by the GL).

July 22, 1997 Page 2

FGLREADPIXELS() UNIX System V FGLREADPIXELS()

NOTES

type index mask component conversion
GL_UNSIGNED_BYTE $2'"8- 1% $(2""8-1) c$
GL_BYTE $2'"7- 1% $(2""8-1)c-1]/2%
GL_BITMAP 1 1
GL_UNSIGNED_SHORT | $2"™"16- 1% $(2"16-1) c$
GL_SHORT $2"""15-1% | $[(2"™16-1)c-1]/2%
GL_UNSIGNED_INT $2'"32- 1% $(2""32-1) c$
GL_INT $2'""31-1% | $[(2"™32-1)c-1]/2%
GL_FLOAT none c

Return values are placed in memory as follows. If format is GL_COLOR_INDEX,
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, or GL_LUMINANCE, asingle value s returned and the data for the ith pixel in the jth
row is placed in location $(j)™width""+7i$. GL_RGB returns three values, GL_RGBA returns four
values, and GL_LUMINANCE_AL PHA returns two values for each pixel, with al values corresponding
to a single pixel occupying contiguous space in pixels. Storage parameters set by fglPixelStore, such as
GL_PACK_LSB_FIRST and GL_PACK_SWAP_BYTES, affect the way that data is written into
memory. SeefglPixelStore for a description.

Values for pixels that lie outside the window connected to the current GL context are undefined.
If an error is generated, no change is made to the contents of pixels.

ERRORS

GL_INVALID_ENUM isgenerated if format or typeis not an accepted value.

GL_INVALID_ENUM is generated if typeis GL_BITMAP and format is not GL_COLOR_INDEX or
GL_STENCIL_INDEX.

GL_INVALID_VALUE isgenerated if either width or height is negative.

GL_INVALID_OPERATION isgenerated if format is GL_COLOR_INDEX and the color buffers store
RGBA color components.

GL_INVALID_OPERATION is generated if format is GL_STENCIL _INDEX and there is no stencil
buffer.

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and there is no
depth buffer.

GL_INVALID_OPERATION is generated if fglReadPixels is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGet with argument GL_INDEX_MODE

SEE ALSO

Page 3

fglCopyPixels, fglDrawPixels, fglPixelM ap, fglPixelStore, fglPixel Transfer,
fglReadBuffer

July 22, 1997

FGLRECT () UNIX System V FGLRECT ()

NAME
fglRectd, fglRectf, fglRecti, fglRects, fglRectdv, fglRectfv, fglRectiv, fglRectsv — draw arectangle

FORTRAN SPECIFICATION

SUBROUTINE fglRectd(REAL*8 x1,
REAL*8y1,
REAL*8 X2,
REAL*8y2)

SUBROUTINE fglRectf(REAL*4 X1,
REAL*4y1,
REAL*4 X2,
REAL*4y2)

SUBROUTINE fglRecti(INTEGER*4 X1,
INTEGER*4 y1,
INTEGER*4 x2,
INTEGER*4y2)

SUBROUTINE fglRects(INTEGER*2 x1,
INTEGER*2 y1,
INTEGER*2 x2,
INTEGER*2y2)

PARAMETERS
x1,yl
Specify one vertex of arectangle.

X2, y2
Specify the opposite vertex of the rectangle.

FORTRAN SPECIFICATION

SUBROUTINE fglRectdv(CHARACTER*8 v1,
CHARACTER*8Vv2)

SUBROUTINE fglRectfv(CHARACTER*8 v1,
CHARACTER*8Vv2)

SUBROUTINE fglRectiv(CHARACTER*8 v1,
CHARACTER*8Vv2)

SUBROUTINE fglRectsv(CHARACTER*8 v1,
CHARACTER*8Vv2)

PARAMETERS
vl Specifies a pointer to one vertex of arectangle.

V2 Specifies a pointer to the opposite vertex of the rectangle.

DESCRIPTION
fglRect supports efficient specification of rectangles as two corner points. Each rectangle command takes
four arguments, organized either as two consecutive pairs of (X,y) coordinates, or as two pointers to arrays,
each containing an (x,y) pair. The resulting rectangle is defined in the z=0 plane.

folRect(x1, y1, x2, y2) is exactly eguivaent to the following sequence: glBegin(GL_POLY GON);
glVertex2(x1, yl); glVertex2(x2, y1); glVertex2(x2, y2); glVertex2(x1, y2); glEnd(); Note that if the second
vertex is above and to the right of the first vertex, the rectangle is constructed with a counterclockwise
winding.

ERRORS
GL_INVALID_OPERATION is generated if fglRect is executed between the execution of fglBegin and

Page 1 July 22, 1997

FGLRECT () UNIX System V FGLRECT ()

the corresponding execution of fglEnd.

SEE ALSO
fglBegin, fglVertex

July 22, 1997 Page 2

FGLRENDERMODE() UNIX System V FGLRENDERMODE()

NAME

fglRender M ode — set rasterization mode

FORTRAN SPECIFICATION

INTEGER* 4 fglRender Mode(INTEGER*4 mode)

PARAMETERS

mode Specifies the rasterization mode. Three values are accepted: GL_RENDER, GL_SELECT, and
GL_FEEDBACK. Theinitial valueisGL_RENDER.

DESCRIPTION

NOTES

fglRender M ode sets the rasterization mode. It takes one argument, mode, which can assume one of three
predefined values:

GL_RENDER Render mode. Primitives are rasterized, producing pixel fragments, which are written
into the frame buffer. Thisisthe normal mode and also the default mode.

GL_SELECT Selection mode. No pixel fragments are produced, and no change to the frame buffer
contents is made. Instead, a record of the names of primitives that would have been
drawn if the render mode had been GL_RENDER is returned in a select buffer, which
must be created (see fgl SelectBuffer) before selection mode is entered.

GL_FEEDBACK Feedback mode. No pixel fragments are produced, and no change to the frame buffer
contents is made. Instead, the coordinates and attributes of vertices that would have
been drawn if the render mode had been GL_RENDER is returned in a feedback
buffer, which must be created (see fglFeedbackBuffer) before feedback mode is
entered.

The return value of fgiIRenderMode is determined by the render mode at the time fglRenderMode is
called, rather than by mode. The values returned for the three render modes are as follows:

GL_RENDER 0.
GL_SELECT The number of hit records transferred to the select buffer.
GL_FEEDBACK The number of values (not vertices) transferred to the feedback buffer.

See the fglSelectBuffer and fglFeedbackBuffer reference pages for more details concerning selection and
feedback operation.

If an error is generated, fglRender M ode returns O regardless of the current render mode.

ERRORS

GL_INVALID_ENUM isgenerated if mode is not one of the three accepted values.

GL_INVALID_OPERATION is generated if fglSelectBuffer is called while the render mode is
GL_SELECT, or if fglRenderMode is called with argument GL_SELECT before fglSelectBuffer is
caled at least once.

GL_INVALID_OPERATION is generated if fglFeedbackBuffer is caled while the render mode is
GL_FEEDBACK, or if fglRenderMode is called with argument GL_FEEDBACK before fglFeedback-
Buffer iscalled at least once.

GL_INVALID_OPERATION is generated if fglRenderMode is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS

Page 1

fglGet with argument GL_RENDER_MODE

July 22, 1997

FGLRENDERMODE() UNIX System V FGLRENDERMODE()

SEE ALSO
fglFeedbackBuffer, fglinitNames, fglL oadName, fglPassT hrough, fglPushName, fgl SelectBuffer

July 22, 1997 Page 2

FGLROTATE() UNIX System V FGLROTATE()

NAME
fglRotated, fglRotatef — multiply the current matrix by a rotation matrix

FORTRAN SPECIFICATION

SUBROUTINE fglRotated(REAL*8 angle,
REAL*8 X,
REAL*8Y,
REAL*82)

SUBROUTINE fglRotatef(REAL*4 angle,
REAL*4 X,
REAL*4y,
REAL*4z)

delim $$

PARAMETERS
angle Specifiesthe angle of rotation, in degrees.

X, Y, Z Specify the x, y, and z coordinates of avector, respectively.

DESCRIPTION
fglRotate produces arotation of angle degrees around the vector $("x", "y", "z")$. The current matrix (see
fglMatrixMode) is multiplied by a rotation matrix with the product replacing the current matrix, as if
fglMultMatrix were called with the following matrix as its argument:

left (~ down 20 matrix {

cool { X" "X" (1-)+ cabove "y" "x" (1- ¢)+ "Z" sabove "X""z" (1-c)-"y" sabove™0}
cool {"x" "y" (1- ¢)-"z" sabove "y" "y" (1-¢)+cabove "y" "z" (1-)+ " "sabove”O}
cool { "x" "Z" (L- ¢+ "y" sabove "y" "Z" (1 - ¢)- "X" sebove" 2" °7 2" (1-¢) +cabove™0}

ccol {70 above "0 above "0 above 1} } Tright)

Where $c "=" cos("angle")$, $s =" sine("angle")$, and $||(""x", "y", "Z*)|| =" 1% (if not, the GL will nor-
malize this vector).

If the matrix mode iseither GL_MODELVIEW or GL_PROJECTION, al objects drawn after fglRotate
is caled are rotated. Use fglPushMatrix and fglPopMatrix to save and restore the unrotated coordinate
system.

NOTES
This rotation follows the right-hand rule, so if the vector $("x", "y", "Z")$ points toward the user, the rota-
tion will be counterclockwise.

ERRORS
GL_INVALID_OPERATION is generated if fglRotate is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE
fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX

SEE ALSO
fglMatrixM ode, fgIMultM atrix, fglPushMatrix, fglScale, fglTrandate

Page 1 July 22, 1997

FGLSCALE() UNIX System V FGLSCALE()

NAME
fglScaled, fglScalef — multiply the current matrix by a general scaling matrix

FORTRAN SPECIFICATION
SUBROUTINE fglScaled(REAL*8 x,

REAL*8Yy,
REAL*82)
SUBROUTINE fglScalef(REAL*4 x,
REAL*4y,
REAL*4 z)
delim $$
PARAMETERS
X, ¥, Z
Specify scale factors along the x, y, and z axes, respectively.
DESCRIPTION

fglScale produces a nonuniform scaling along the X, y, and z axes. The three parameters indicate the
desired scale factor along each of the three axes.

The current matrix (see fglMatrixMode) is multiplied by this scale matrix, and the product replaces the
current matrix asif fglScale were called with the following matrix as its argument:

left (~ down 20 matrix {
ccol { ™x" above "0 above "0 above "0 }
ccol { "0 above ™y" above "0 above "0 }
ccol { "0 above "0 above ™2z" above ™0}
ccol { "0 above "0 above "0 above ™1} } ~"right)

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, al objects drawn after fglScale
iscalled are scaled.

Use fglPushMatrix and fglPopM atrix to save and restore the unscaled coordinate system.

NOTES
If scale factors other than 1 are applied to the modelview matrix and lighting is enabled, lighting often
appears wrong. In that case, enable automatic normalization of normals by calling fglEnable with the
argument GL_NORMALIZE.

ERRORS
GL_INVALID_OPERATION isgenerated if fglScale is executed between the execution of fgIBegin and
the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE
fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX

SEE ALSO
fglMatrixM ode, fgIM ultM atrix, fglPushMatrix, fglRotate, fglTrandate

Page 1 July 22, 1997

FGLSCISSOR() UNIX System V FGLSCISSOR()

NAME
fglScissor — define the scissor box

FORTRAN SPECIFICATION
SUBROUTINE fglScissor (INTEGER*4 X,

INTEGER*4Yy,
INTEGER* 4 width,
INTEGER*4 height)
PARAMETERS
X, ¥
Specify the lower left corner of the scissor box. Initialy (0, 0).
width, height

Specify the width and height of the scissor box. When a GL context is first attached to a window,
width and height are set to the dimensions of that window.

DESCRIPTION
folScissor defines a rectangle, called the scissor box, in window coordinates. The first two arguments, x
and y, specify the lower left corner of the box. width and height specify the width and height of the box.

To enable and disable the scissor test, call fglEnable and fglDisable with argument GL_SCISSOR_TEST.
The test is initialy disabled. While the test is enabled, only pixels that lie within the scissor box can be
modified by drawing commands. Window coordinates have integer values at the shared corners of frame
buffer pixels. gl Sci ssor (0, 0, 1, 1) alows modification of only the lower left pixel in the window,
and gl Sci ssor (0, 0, 0, 0) doesn't allow modification of any pixelsin the window.

When the scissor test is disabled, it is as though the scissor box includes the entire window.

ERRORS
GL_INVALID_VALUE isgenerated if either width or height is negative.

GL_INVALID_OPERATION is generated if fglScissor is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_SCISSOR_BOX
fgll sEnabled with argument GL_SCISSOR_TEST

SEE ALSO
fglEnable, fglViewport

Page 1 July 22, 1997

FGLSELECTBUFFER() UNIX System V FGLSELECTBUFFER()

NAME

foglSelectBuffer — establish a buffer for selection mode values

FORTRAN SPECIFICATION

SUBROUTINE fglSelectBuffer (INTEGER* 4 size,
CHARACTER* 8 buffer)

PARAMETERS

size Specifiesthe size of buffer.
buffer Returns the selection data.

DESCRIPTION

NOTES

fglSelectBuffer has two arguments: buffer is a pointer to an array of unsigned integers, and size indicates
the size of the array. buffer returns values from the name stack (see fgllnitNames, fglL oadName,
fglPushName) when the rendering mode is GL_SELECT (see fgiIRenderMode). fglSelectBuffer must
be issued before selection mode is enabled, and it must not be issued while the rendering mode is
GL_SELECT.

A programmer can use selection to determine which primitives are drawn into some region of a window.
The region is defined by the current modelview and perspective matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a primitive or a raster
position intersects the clipping volume defined by the viewing frustum and the user-defined clipping
planes, this primitive causes a selection hit. (With polygons, no hit occurs if the polygon is culled.) When
a change is made to the name stack, or when fglRender M ode is called, a hit record is copied to buffer if
any hits have occurred since the last such event (name stack change or fglRenderMode call). The hit
record consists of the number of names in the name stack at the time of the event, followed by the
minimum and maximum depth values of al vertices that hit since the previous event, followed by the name
stack contents, bottom name first.

Depth values (which are in the range [0,1]) are multiplied by 2°32 - 1, before being placed in the hit record.

An internal index into buffer is reset to 0 whenever selection mode is entered. Each time a hit record is
copied into buffer, the index isincremented to point to the cell just past the end of the block of names - that
is, to the next available cell. If the hit record is larger than the number of remaining locations in buffer, as
much data as can fit is copied, and the overflow flag is set. If the name stack is empty when a hit record is
copied, that record consists of 0 followed by the minimum and maximum depth values.

To exit selection mode, call fglRenderMode with an argument other than GL_SELECT. Whenever
fglRenderMode is called while the render mode is GL_SEL ECT, it returns the number of hit records
copied to buffer, resets the overflow flag and the selection buffer pointer, and initializes the name stack to
be empty. If the overflow bit was set when fgilRender M ode was called, a negative hit record count is
returned.

The contents of buffer is undefined until fglRenderMode is called with an argument other than
GL_SELECT.

fglBegin/fglEnd primitives and calls to fglRaster Pos can result in hits.

ERRORS

Page 1

GL_INVALID_VALUE isgenerated if sizeis negative.

GL_INVALID_OPERATION is generated if fglSelectBuffer is called while the render mode is
GL_SELECT, or if fglRenderMode is called with argument GL_SELECT before fglSelectBuffer is
caled at least once.

July 22, 1997

FGLSELECTBUFFER() UNIX System V FGLSELECTBUFFER()

GL_INVALID_OPERATION is generated if fglSelectBuffer is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_NAME_STACK_DEPTH

SEE ALSO
fglFeedback Buffer, fgllnitNames, fglL oadName, fglPushName, fglRender M ode

July 22, 1997 Page 2

FGLSHADEMODEL () UNIX System V FGLSHADEMODEL ()

NAME
fglShadeM odel — select flat or smooth shading

FORTRAN SPECIFICATION
SUBROUTINE fglShadeM odel(INTEGER* 4 mode)

delim $$

PARAMETERS
mode Specifies a symbolic value representing a shading technique. Accepted values are GL_FLAT and
GL_SMOOTH. Theinitial valueisGL_SMOOTH.

DESCRIPTION
GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the computed
colors of vertices to be interpolated as the primitive is rasterized, typically assigning different colors to
each resulting pixel fragment. Flat shading selects the computed color of just one vertex and assigns it to
all the pixel fragments generated by rasterizing a single primitive. In either case, the computed color of a
vertex is the result of lighting if lighting is enabled, or it is the current color at the time the vertex was
specified if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Starting when fglBegin is issued and counting
vertices and primitives from 1, the GL gives each flat-shaded line segment i the computed color of vertex
$i + 13, its second vertex. Counting similarly from 1, the GL gives each flat-shaded polygon the computed
color of the vertex listed in the following table. This is the last vertex to specify the polygon in all cases
except single polygons, where the first vertex specifies the flat-shaded color.

primitive type of polygon i vertex
Single polygon ($i ==1%) 1
Triangle strip $i +2%
Triangle fan $i +2%
Independent triangle $3i%
Quad strip $2i+2%
Independent quad $4i 3%

Flaa and smooth shading are specified by fglShadeModel with mode set to GL_FLAT and
GL_SMOOTH, respectively.

ERRORS
GL_INVALID_ENUM isgenerated if mode is any value other than GL_FLAT or GL_SMOOTH.

GL_INVALID_OPERATION is generated if fgiShadeModd is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_SHADE_MODEL

SEE ALSO
fglBegin, fglColor, fglLight, fglLightM odel

Page 1 July 22, 1997

FGLSTENCILFUNC() UNIX System V FGLSTENCILFUNC()

NAME

fglStencilFunc — set function and reference value for stencil testing

delim $$

FORTRAN SPECIFICATION

SUBROUTINE fglStencilFunc(INTEGER* 4 func,
INTEGER* 4 ref,
INTEGER*4 mask)

PARAMETERS

func Specifies the test function. Eight tokens are valid: GL_NEVER, GL_LESS, GL_LEQUAL,
GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and GL_ALWAYS. Theinitia
vaueisGL_ALWAYS.

ref Specifies the reference value for the stencil test. ref is clamped to the range [0,$2 sup n - 1$], where
n is the number of bitplanesin the stencil buffer. Theinitial valueisO.

mask
Specifies a mask that is ANDed with both the reference value and the stored stencil value when the
testisdone. Theinitial valueisall 1's.

DESCRIPTION

Page 1

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into the sten-
cil planes using GL drawing primitives, then render geometry and images, using the stencil planes to mask
out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve special
effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the refer-
ence value and the value in the stencil buffer. To enable and disable the test, call fglEnable and fglDisable
with argument GL_STENCIL_TEST. To specify actions based on the outcome of the stencil test, call
fglStencilOp.

func is a symbolic constant that determines the stencil comparison function. It accepts one of eight values,
shown in the following list. ref is an integer reference value that is used in the stencil comparison. It is
clamped to the range [0,$2 sup n - 1$], where n is the number of bitplanes in the stencil buffer. mask is
bitwise ANDed with both the reference value and the stored stencil value, with the ANDed values partici-
pating in the comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the following list shows
the effect of each comparison function that can be specified by func. Only if the comparison succeeds is
the pixel passed through to the next stage in the rasterization process (see fglStencilOp). All tests treat
stencil values as unsigned integers in the range [0,$2 sup n - 19$], where n is the number of bitplanesin
the stencil buffer.

The following values are accepted by func:

GL_NEVER Alwaysfails.
GL_LESS Passesif (ref & mask) < (stencil & mask).
GL_LEQUAL Passesif (ref & mask) < (stencil & mask).

GL_GREATER Passesif (ref & mask) > (stencil & mask).
GL_GEQUAL Passes if (ref & mask) = (stencil & mask).
GL_EQUAL Passesif (ref & mask) = (stencil & mask).
GL_NOTEQUAL Passesif (ref & mask) # (stencil & mask).

July 22, 1997

FGLSTENCILFUNC() UNIX System V FGLSTENCILFUNC()

GL_ALWAYS Always passes.

NOTES
Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and it is
asif the stencil test always passes.

ERRORS
GL_INVALID_ENUM isgenerated if funcis not one of the eight accepted values.

GL_INVALID_OPERATION isgenerated if fglStencilFunc is executed between the execution of fglBe-
gin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_STENCIL_FUNC
fglGet with argument GL_STENCIL_VALUE_MASK
fglGet with argument GL_STENCIL_REF
fglGet with argument GL_STENCIL_BITS
fgllsEnabled with argument GL_STENCIL_TEST

SEE ALSO
fglAlphaFunc, fglBlendFunc, fglDepthFunc, fglEnable, fgll sEnabled, fglL ogicOp, fglStencilOp

July 22, 1997 Page 2

FGLSTENCILMASK() UNIX System V FGLSTENCILMASK()

NAME
fglStencilM ask — control the writing of individual bitsin the stencil planes

FORTRAN SPECIFICATION
SUBROUTINE fglStencilM ask(INTEGER*4 mask)

delim $$

PARAMETERS
mask Specifies a bit mask to enable and disable writing of individual bits in the stencil planes. Initially,
themask isal 1's.

DESCRIPTION
fglStencilM ask controls the writing of individual bitsin the stencil planes. The least significant n bits of
mask, where n is the number of bitsin the stencil buffer, specify amask. Where a 1 appears in the mask,
it's possible to write to the corresponding bit in the stencil buffer. Where a 0 appears, the corresponding
bit iswrite-protected. Initially, al bits are enabled for writing.

ERRORS
GL_INVALID_OPERATION is generated if fglStencilMask is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
folGet with argument GL_STENCIL_WRITEMASK
fglGet with argument GL_STENCIL_BITS

SEE ALSO
fglColor M ask, fglDepthM ask, fgll ndexM ask, fglStencilFunc, fglStencilOp

Page 1 July 22, 1997

FGLSTENCILOP() UNIX System V FGLSTENCILOP()

NAME

fglStencilOp — set stencil test actions

delim $$

FORTRAN SPECIFICATION

SUBROUTINE fglStencilOp(INTEGER* 4 fail,
INTEGER* 4 Zfail,
INTEGER*4 zpass)

PARAMETERS

fail Specifies the action to take when the stencil test fails. Six symbolic constants are accepted:
GL_KEEP, GL_ZERO, GL_REPLACE, GL_INCR, GL_DECR, and GL_INVERT. The initia
valueisGL_KEEP.

Zfail Specifies the stencil action when the stencil test passes, but the depth test fails. zfail accepts the same
symbolic constants asfail. Theinitial valueis GL_KEEP.

Zpass
Specifies the stencil action when both the stencil test and the depth test pass, or when the stencil test
passes and either there is no depth buffer or depth testing is not enabled. zpass accepts the same sym-
bolic constants as fail. The initial valueisGL_KEEP.

DESCRIPTION

NOTES

Page 1

Stenciling, like depth-buffering, enables and disables drawing on a per-pixel basis. You draw into the sten-
cil planes using GL drawing primitives, then render geometry and images, using the stencil planes to mask
out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve special
effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the value in
the stencil buffer and a reference value. To enable and disable the test, call fglEnable and fglDisable with
argument GL_STENCIL_TEST; to control it, call fglStencilFunc.

fglStencilOp takes three arguments that indicate what happens to the stored stencil value while stenciling
isenabled. If the stencil test fails, no change is made to the pixel’s color or depth buffers, and fail specifies
what happens to the stencil buffer contents. The following six actions are possible.

GL_KEEP Keeps the current value.

GL_ZERO Sets the stencil buffer value to 0.

GL_REPLACE Setsthe stencil buffer value to ref, as specified by fglStencilFunc.

GL_INCR Increments the current stencil buffer value. Clamps to the maximum representable
unsigned value.

GL_DECR Decrements the current stencil buffer value. Clampsto 0.

GL_INVERT Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. When incremented and decremented, values are
clamped to 0 and $2 sup n - 1$, where n is the value returned by querying GL_STENCIL_BITS.

The other two arguments to fglStencilOp specify stencil buffer actions that depend on whether subsequent
depth buffer tests succeed (zpass) or fail (Zfail) (see

fglDepthFunc). The actions are specified using the same six symbolic constants as fail. Note that Zfail is
ignored when there is no depth buffer, or when the depth buffer is not enabled. In these cases, fail and
zpass specify stencil action when the stencil test fails and passes, respectively.

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and it is

July 22, 1997

FGLSTENCILOP() UNIX System V FGLSTENCILOP()

asif the stencil tests always pass, regardless of any call to fglStencilOp.

ERRORS
GL_INVALID_ENUM is generated if fail, zfail, or zpass is any value other than the six defined constant
values.

GL_INVALID_OPERATION isgenerated if fglStencilOp is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_STENCIL_FAIL
fglGet with argument GL_STENCIL_PASS DEPTH_PASS
fglGet with argument GL_STENCIL_PASS DEPTH_FAIL
fglGet with argument GL_STENCIL_BITS
fgllsEnabled with argument GL_STENCIL_TEST

SEE ALSO
fglAlphaFunc, fglBlendFunc, fglDepthFunc, fglEnable, fglL ogicOp, fglStencilFunc

July 22, 1997 Page 2

FGLTEXCOORD () UNIX System V FGLTEXCOORD ()

NAME

fglTexCoordld, fglTexCoordlf, fglTexCoordli, fglTexCoordls, fglTexCoord2d, fglTexCoord2f,
fglTexCoord2i, fglTexCoord2s, fglTexCoord3d, fglTexCoord3f, fglTexCoord3i, fglTexCoord3s,
fglTexCoord4d, fglTexCoord4f, fglTexCoord4i, fglTexCoord4s, fglTexCoordldv, fglTexCoordifv,
fglTexCoord1iv, fglTexCoordlsv, fgl TexCoord2dv, fogl TexCoord2fv, fgl TexCoord2iv,
fgl TexCoord2sv, fgl TexCoord3dv, fgl TexCoor d3fv, fgl TexCoord3iv, fgl TexCoor d3sv,
fogl TexCoord4dv, fglTexCoord4fv, fglTexCoorddiv, fglTexCoord4sv — set the current texture coordi-
nates

FORTRAN SPECIFICATION

Page 1

SUBROUTINE fglTexCoord1d(REAL*8s)
SUBROUTINE fglTexCoord1f(REAL*4 s)
SUBROUTINE fglTexCoord1i(INTEGER*4 s)
SUBROUTINE fglTexCoord1s(INTEGER*2 s)
SUBROUTINE fglTexCoord2d(REAL*8 s,
REAL*8t)
SUBROUTINE fglTexCoor d2f(REAL*4 s,
REAL*41)
SUBROUTINE fglTexCoord2i(INTEGER*4 s,
INTEGER*4)
SUBROUTINE fglTexCoord2s(INTEGER*2s,
INTEGER*21t)
SUBROUTINE fglTexCoord3d(REAL*8's,
REAL*8t,
REAL*8r)
SUBROUTINE fglTexCoor d3f(REAL*4 s,
REAL*4t,
REAL*4r1)
SUBROUTINE fglTexCoord3i(INTEGER*4 s,
INTEGER* 4,
INTEGER*4r)
SUBROUTINE fglTexCoord3s(INTEGER*2s,
INTEGER*2t,
INTEGER*2r)
SUBROUTINE fglTexCoor d4d(REAL*8 s,
REAL*8t,
REAL*8r,
REAL*8q)
SUBROUTINE fglTexCoor d4f(REAL*4 s,
REAL*4t,
REAL*4r,
REAL*4q)
SUBROUTINE fglTexCoor d4i(INTEGER*4 s,
INTEGER* 4,
INTEGER*4,
INTEGER*4 q)
SUBROUTINE fglTexCoord4s(INTEGER*2s,
INTEGER*2t,
INTEGER*2r,
INTEGER*2q)

July 22, 1997

FGLTEXCOORD () UNIX System V FGLTEXCOORD ()

PARAMETERS
Sy tl rl q
Specify s, t, r, and q texture coordinates. Not al parameters are present in al forms of the com-
mand.

FORTRAN SPECIFICATION
SUBROUTINE fglTexCoordldv(CHARACTER*8 V)
SUBROUTINE fglTexCoord1fv(CHARACTER*8 V)
SUBROUTINE fglTexCoordliv(CHARACTER*8 V)
SUBROUTINE fglTexCoordlsv(CHARACTER*8 V)
SUBROUTINE fglTexCoord2dv(CHARACTER*8 V)
SUBROUTINE fglTexCoord2fv(CHARACTER*8 V)
SUBROUTINE fglTexCoord2iv(CHARACTER*8 V)
SUBROUTINE fglTexCoord2sv(CHARACTER*8 V)
SUBROUTINE fglTexCoord3dv(CHARACTER*8 V)
SUBROUTINE fglTexCoord3fv(CHARACTER*8 V)
SUBROUTINE fglTexCoord3iv(CHARACTER*8 V)
SUBROUTINE fglTexCoord3sv(CHARACTER*8 V)
SUBROUTINE fgl TexCoor d4dv(CHARACTER*8 V)
SUBROUTINE fglTexCoor d4fv(CHARACTER*8 V)
SUBROUTINE fglTexCoor d4iv(CHARACTER*8 V)
SUBROUTINE fglTexCoord4sv(CHARACTER*8 V)

PARAMETERS
% Specifies a pointer to an array of one, two, three, or four el ements, which in turn specify the s, t, r,
and q texture coordinates.

DESCRIPTION
fglTexCoord specifies texture coordinates in one, two, three, or four dimensions. fglTexCoord1 sets the
current texture coordinatesto (s, 0, 0, 1); acall to
fglTexCoord2 setsthemto (s, t, 0, 1). Similarly, fglTexCoor d3 specifies the texture coordinates as (s, t, r,
1), and fgITexCoor d4 defines al four components explicitly as (s, t, r, g).

The current texture coordinates are part of the data that is associated with each vertex and with the current
raster position. Initialy, thevaluesfor s, t, r, and gare (0, 0, O, 1).

NOTES
The current texture coordinates can be updated at any time. In particular,
fglTexCoord can be called between a call to fglBegin and the corresponding call to fglEnd.

ASSOCIATED GETS
fglGet with argument GL_CURRENT_TEXTURE_COORDS

SEE ALSO
fgl TexCoordPointer, fglVertex

July 22, 1997 Page 2

FGLTEXCOORDPOINTER() UNIX System V FGLTEXCOORDPOINTER()

NAME

fgl TexCoor dPointer — define an array of texture coordinates

FORTRAN SPECIFICATION

SUBROUTINE fglTexCoordPointer (INTEGER* 4 size,

INTEGER*4 type,

INTEGER*4 stride,

CHARACTER*8 pointer)
delim $$

PARAMETERS

size Specifiesthe number of coordinates per array element. Must be 1, 2, 3 or 4. Theinitial valueis 4.

type Specifies the data type of each texture coordinate. Symbolic constants GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE are accepted. Theinitial valueisGL_FL OAT.

stride Specifies the byte offset between consecutive array elements. If stride is 0, the array elements are
understood to be tightly packed. The initial value isO.

pointer Specifies a pointer to the first coordinate of the first element in the array.

DESCRIPTION

NOTES

fglTexCoordPointer specifies the location and data format of an array of texture coordinates to use when
rendering. size specifies the number of coordinates per element, and must be 1, 2, 3, or 4. type specifies
the data type of each texture coordinate and stride specifies the byte stride from one array element to the
next allowing vertexes and attributes to be packed into a single array or stored in separate arrays. (Single-
array storage may be more efficient on some implementations; see

fgllnterleavedArrays.) When a texture coordinate array is specified, size, type, stride, and pointer are
saved client-side state.

To enable and disable the texture coordinate array, cal fglEnableClientState and fglDisableClientState
with the argument GL_ TEXTURE_COORD_ARRAY. If enabled, the texture coordinate array is used
when fglDrawArrays, fglDrawElements or

fglArrayElement iscalled.

Use fglDrawArrays to construct a sequence of primitives (all of the same type) from prespecified vertex
and vertex attribute arrays. Use fglArrayElement to specify primitives by indexing vertexes and vertex
attributes and fglDrawElements to construct a sequence of primitives by indexing vertexes and vertex
attributes.

fgl TexCoordPointer isavailable only if the GL versionis 1.1 or greater.

The texture coordinate array isinitially disabled and it won't be accessed when
fglArrayElement, fglDrawElements or fglDrawArraysis called.

Execution of fglTexCoordPointer is not allowed between the execution of fglBegin and the corresponding
execution of fglEnd, but an error may or may not be generated. If no error is generated, the operation is
undefined.

fgl TexCoordPointer istypically implemented on the client side with no protocol.

The texture coordinate array parameters are client-side state and are therefore not saved or restored by
fglPushAttrib and fglPopAttrib. UsefglPushClientAttrib and
fglPopClientAttrib instead.

ERRORS

Page 1

GL_INVALID_VALUE isgenerated if sizeisnot 1, 2, 3, or 4.

July 22, 1997

FGLTEXCOORDPOINTER() UNIX System V FGLTEXCOORDPOINTER()

GL_INVALID_ENUM isgenerated if typeisnot an accepted value.
GL_INVALID_VALUE isgenerated if strideis negative.

ASSOCIATED GETS
fgll sEnabled with argument GL_TEXTURE_COORD_ARRAY
fglGet with argument GL_TEXTURE_COORD_ARRAY_SIZE
fglGet with argument GL_TEXTURE_COORD_ARRAY_TYPE
fglGetPointerv with argument GL_TEXTURE_COORD_ARRAY_POINTER

SEE ALSO
fglArrayElement, fglColor Pointer, fglDrawArrays, fglDrawElements,
fglEdgeFlagPointer, fglEnable, fglGetPointerv, fgllndexPointer, fglNormalPointer, fglPopClientAt-
trib, fglPushClientAttrib, fgl TexCoord, fglVertexPointer

July 22, 1997 Page 2

FGLTEXENV () UNIX System V FGLTEXENV ()

NAME

fgl TexEnvf, fgl TexEnvi, fgl TexEnvfv, fgl TexEnviv — set texture environment parameters

FORTRAN SPECIFICATION

SUBROUTINE fgI TexEnvf(INTEGER* 4 tar get,
INTEGER* 4 pname,
REAL*4 param)

SUBROUTINE fgITexEnvi(INTEGER* 4 target,
INTEGER* 4 pname,
INTEGER*4 param)

delim $$

PARAMETERS

target Specifies atexture environment. Must be GL_TEXTURE_ENV.

pname
Specifies the symbolic name of a single-valued texture environment parameter. Must be
GL_TEXTURE_ENV_MODE.

param
Specifies a single symbolic constant, one of GL_MODULATE, GL_DECAL, GL_BLEND, or
GL_REPLACE.

FORTRAN SPECIFICATION

SUBROUTINE fglTexEnviv(INTEGER*4 target,
INTEGER* 4 pnarme,
CHARACTER*8 params)

SUBROUTINE fgI TexEnviv(INTEGER*4 target,
INTEGER*4 pnarme,
CHARACTER*8 params)

PARAMETERS

target Specifiesatexture environment. Must be GL_ TEXTURE_ENV.

pname Specifies the symbolic name of a texture environment parameter. Accepted values are
GL_TEXTURE_ENV_MODE and GL_TEXTURE_ENV_COLOR.

params Specifies a pointer to a parameter array that contains either a single symbolic constant or an
RGBA color.

DESCRIPTION

Page 1

A texture environment specifies how texture values are interpreted when a fragment is textured. target
must be GL_TEXTURE_ENV. pname can be ether GL_TEXTURE_ENV_MODE or
GL_TEXTURE_ENV_COLOR.

If pname is GL_TEXTURE_ENV_MODE, then paramsis (or points to) the symbolic name of a texture
function. Four texture functions may be specified: GL_MODULATE, GL_DECAL, GL_BLEND, and
GL_REPLACE.

A texture function acts on the fragment to be textured using the texture image value that applies to the frag-
ment (see fglTexParameter) and produces an RGBA color for that fragment. The following table shows
how the RGBA color is produced for each of the three texture functions that can be chosen. Cisatriple
of color values (RGB) and A isthe associated alphavalue. RGBA values extracted from a texture image
are in the range [0,1]. The subscript f refers to the incoming fragment, the subscript t to the texture
image, the subscript c to the texture environment color, and subscript v indicates a value produced by
the texture function.

July 22, 1997

FGLTEXENV ()

UNIX System V

FGLTEXENV ()

A texture image can have up to four components per texture element (see fglTexImagelD,
fglTexlmage2D, fglCopyTexl magelD, and fglCopyT exl mage2D). In a one-component image, $L sub t$
indicates that single component. A two-component image uses $L sub t$ and $A sub t$. A three
component image has only a color value, $C sub t$. A four-component image has both a color value $C
sub t$ and an alpha value $A sub t$.

Base internal Texture functions
format GL_MODULATE GL_DECAL GL_BLEND GL_REI
GL_ALPHA $Csubv=Csubf$ undefined $Csubv= Csubf$ $Csubv =
$Asubv=AsubfA subt$ $A subv=A sub f$ $A sub v -
GL_LUMINANCE || $Csubv =L subtCsubf$ undefined $Csubv=(1-Lsubt)Csubf$ | $Csubv:
1 $+LsubtCsubch
$A subv =A subf$ $A subv =A subf$ $A subv -
GL_LUMINANCE || $Csubv=L subtCsubf$ undefined $Csubv=(1-Lsubt)Csubf$ | $Csubv:
_ALPHA $+L subt Csubc$
2
$Asubv=AsubtA subf$ $Asubv=AsubtA subf$ $A sub v -
GL_INTENSITY $Csubv=Csubfl subt$ undefined $Csubv=(1-1subt)Csubf$ | $Csubv:
$+ 1 subt Csubc$
$Asubv=Asubfl subt$ $Asubv=(1-1subt)Asubf$ | $A subv:
$+ 1 subt A subc$
GL _RGB $Csubv=CsubtCsubf$ $Csubv=Csubt$ $Csubv=(1-Csubt)Csubf$ | $C subv -
3 $+Csubt Csubc$
$A subv=A subf$ $A subv=Asubf$ $A subv=A subf$ $A sub v =
GL_RGBA $Csubv=CsubtCsubf$ | $Csubv=(1-Asubt)Csubf$| $SCsubv=(1-Csubt)Csubf$ | $Csubv =
4 $+AsubtCsubt$ $+Csubt Csubc$
$Asubv=AsubtA subf$ $A subv=Asubf$ $Asubv=AsubtA subf$ $A sub v -

If pname is GL_TEXTURE_ENV_COLOR, params is a pointer to an array that holds an RGBA
color consisting of four values. Integer color components are interpreted linearly such that the most
positive integer maps to 1.0, and the most negative integer mapsto -1.0. The values are clamped to
therange [0,1] when they are specified. $C sub c$ takesthese four values.

GL_TEXTURE_ENV_MODE defaults to GL_MODULATE and GL_TEXTURE_ENV_COLOR
defaultsto (0, O, 0, 0).

NOTES

GL_REPLACE may only be used if the GL versionis 1.1 or greater.
Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or greater.

ERRORS

GL_INVALID_ENUM is generated when target or pname is not one of the accepted defined values, or
when params should have a defined constant value (based on the value of pname) and does not.

GL_INVALID_OPERATION is generated if fglTexEnv is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS

folGetTexEnv

July 22, 1997

Page 2

FGLTEXENV () UNIX System V FGLTEXENV ()

SEE ALSO
fglCopyPixels, fglCopyTexIlmagelD, fglCopyTexI mage2D, fglCopyTexSublmagelD,
fglCopyTexSublmage2D, fglTexlmagelD, fglTexlmage?D, fglTexParameter, fglTexSublmagelD,
fgl TexSubl mage2D

Page 3 July 22, 1997

FGLTEXGEN() UNIX System V FGLTEXGEN()

NAME
fol TexGend, fgl TexGenf, fgl TexGeni, fgl TexGendv, fgl TexGenfv, fglTexGeniv — control the generation
of texture coordinates

FORTRAN SPECIFICATION
SUBROUTINE fgITexGend(INTEGER*4 coord,

INTEGER* 4 pname,
REAL*8 param)

SUBROUTINE fgl TexGenf(INTEGER*4 coord,
INTEGER* 4 pname,
REAL*4 param)

SUBROUTINE fglTexGeni(INTEGER*4 coord,
INTEGER* 4 pname,
INTEGER*4 param)

delim $$

PARAMETERS

coord Specifies atexture coordinate. Mustbeoneof GL_S,GL_T,GL_R, or GL_Q.

pname Specifies the symbolic name of the texture-coordinate generation function. Must be
GL_TEXTURE_GEN_MODE.

param Specifies a single-valued texture generation parameter, one of GL_OBJECT_LINEAR,
GL_EYE_LINEAR, or GL_SPHERE_MAP.

FORTRAN SPECIFICATION

SUBROUTINE fgITexGendv(INTEGER*4 coord,
INTEGER*4 pnarme,
CHARACTER*8 params)

SUBROUTINE fgI TexGenfv(INTEGER*4 coord,
INTEGER*4 pname,
CHARACTER*8 params)

SUBROUTINE fgI TexGeniv(INTEGER*4 coord,
INTEGER* 4 pnarme,
CHARACTER*8 params)

PARAMETERS
coord Specifiesatexture coordinate. Mustbeoneof GL_S,GL_T,GL_R,or GL_Q.

pname Specifies the symbolic name of the texture-coordinate generation function or function parameters.
Must be GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE.

params Specifies a pointer to an array of texture generation parameters. If pname is
GL_TEXTURE_GEN_MODE, then the array must contain a single symbolic constant, one of
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. Otherwise, params
holds the coefficients for the texture-coordinate generation function specified by pname.

DESCRIPTION

fglTexGen selects a texture-coordinate generation function or supplies coefficients for one of the func-
tions. coord names one of the (s, t, r, q) texture coordinates; it must be one of the symbolsGL_S, GL_T,
GL_R, or GL_Q. pname must be one of three symbolic constants: GL_TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE. If pnameisGL_TEXTURE_GEN_MODE, then params
chooses a mode, one of GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. If
pname is either GL_OBJECT_PLANE or GL_EYE_PLANE, params contains coefficients for the
corresponding texture generation function.

Page 1 July 22, 1997

FGLTEXGEN() UNIX System V FGLTEXGEN()

If the texture generation function is GL_OBJECT_LINEAR, the function
$g=psublxsubo+psub2ysubo+psub3zsubo+psub4wsubo$

is used, where g is the value computed for the coordinate named in coord, $p sub 1$, $p sub 2$, $p sub
3%, and $p sub 4$ are the four values supplied in params, and $x sub o$, $y sub 0$, $z sub 0$, and $w sub
0% are the object coordinates of the vertex. This function can be used, for example, to texture-map terrain
using sea level as a reference plane (defined by $p sub 1$, $p sub 23, $p sub 33$, and $p sub 4%). The alti-
tude of aterrain vertex is computed by the GL_OBJECT_LINEAR coordinate generation function as its
distance from sea level; that altitude can then be used to index the texture image to map white snow onto
peaks and green grass onto foothills.

If the texture generation functionisGL_EYE_LINEAR, the function
$g={psub 1} sup prime~x sub e+ {p sub 2} sup prime~y sub e+ {p sub 3} sup prime "~z sub e + {p sub 4} sup prime“w sub $
isused, where

$({psub 1} sup prime
“{psub 2} supprime~{psub 3} sup prime” {{psub 4}sup prime}) =(psub 1™ psub 2™ psub 3 psub
4)"M sup -1$

and $x sub e$, $y sub e$, $z sub e$, and $w sub e$ are the eye coordinates of the vertex, $p sub 1$, $p sub
2%, $p sub 3%, and $p sub 4% are the values supplied in params, and M is the modelview matrix when
foglTexGen is invoked. If M is poorly conditioned or singular, texture coordinates generated by the
resulting function may be inaccurate or undefined.

Note that the values in params define a reference plane in eye coordinates. The modelview matrix that is
applied to them may not be the same one in effect when the polygon vertices are transformed. This func-
tion establishes afield of texture coordinates that can produce dynamic contour lines on moving objects.

If pname is GL_SPHERE_MAP and coord is either GL_Sor GL_T, s and t texture coordinates are
generated as follows. Let u be the unit vector pointing from the origin to the polygon vertex (in eye coordi-
nates). Let n sup prime be the current normal, after transformation to eye coordinates. Let

$f =" (fsubxfsuby™fsubz)supT$
be the reflection vector such that

$f =" u™-"2nsupprimensupprimesup T u$

Finaly, let $m™="2sqrt { f subx sup {2} +fsuby sup{™2} + (f subz+ 1) sup 2}$. Then the values
assigned to the s and t texture coordinates are

$s™="f sub x over m~+~ 1 over 2$

$t"="f suby over m "+~ 1 over 2%

To enable or disable a texture-coordinate generation function, call fglEnable or fglDisable with one of the
symbolic texture-coordinate names (GL_TEXTURE_GEN_S GL_TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q) as the argument. When enabled, the specified
texture coordinate is computed according to the generating function associated with that coordinate. When
disabled, subsequent vertices take the specified texture coordinate from the current set of texture coordi-
nates. Initially, all texture generation functions are set to GL_EYE_LINEAR and are disabled. Both s
plane equations are (1, 0, 0, 0), both t plane equations are (0, 1, 0, 0), and all r and g plane equations
are (0,0, 0, 0).

ERRORS
GL_INVALID_ENUM is generated when coord or pname is not an accepted defined value, or when
pnameisGL_TEXTURE_GEN_MODE and paramsis not an accepted defined value.

GL_INVALID_ENUM is generated when pname is GL_TEXTURE_GEN _MODE, params is
GL_SPHERE_MAP, and coord iseither GL_R or GL_Q.

July 22, 1997 Page 2

FGLTEXGEN() UNIX System V FGLTEXGEN()

GL_INVALID_OPERATION is generated if fglTexGen is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGetTexGen
fgllsEnabled with argument GL_TEXTURE_GEN_S
fgllsEnabled with argument GL_TEXTURE_GEN_T
fgllsEnabled with argument GL_TEXTURE_GEN_R
fgllsEnabled with argument GL_TEXTURE_GEN_Q

SEE ALSO
fglCopyPixels, fglCopyTexlmage2D, fglCopyTexSublmagelD, fglCopyTexSublmage2D, fglTexEnv,
fglTexlmagelD, fglTexlmage2D, fglTexParameter, fgl TexSubl magelD, fgl TexSubl mage2D

Page 3 July 22, 1997

FGLTEXIMAGE1D()

NAME

UNIX System V FGLTEXIMAGEI1D()

fgl TexlmagelD - specify a one-dimensional texture image

FORTRAN SPECIFICATION
SUBROUTINE fgITexI magelD(INTEGER* 4 target,

delim $$
PARAMETERS
target

level

internalformat

width

border
format

type

pixels
DESCRIPTION

INTEGER* 4 level,
INTEGER* 4 internalformat,
INTEGER* 4 width,
INTEGER* 4 border,
INTEGER* 4 format,
INTEGER* 4 type,
CHARACTER*8 pixels)

Specifies the target texture. Must be GL_TEXTURE_1D or
GL_PROXY_TEXTURE_1D.

Specifies the level-of-detail number. Level O is the base image level. Level n is the nth
mipmap reduction image.

Specifies the number of color componentsin the texture. Must be 1, 2, 3, or 4, or one of the
following symbolic constantss GL_ALPHA, GL_ALPHA4, GL_ALPHAS,
GL_ALPHA12, GL_ALPHAZ16, GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCEIS6,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4 _ALPHAA4,
GL_LUMINANCEG_ALPHAZ2, GL_LUMINANCES8_ALPHAS,
GL_LUMINANCE12 ALPHAA4, GL_LUMINANCE12 ALPHA12,
GL_LUMINANCE16_ALPHA1S6, GL_INTENSITY, GL_INTENSITY4,

GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
GL_R3 G3 B2, GL_RGB4, GL_RGB5, GL RGBS, GL_RGB10, GL_RGBI12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5 Al, GL_RGBAS,
GL_RGB10 A2 GL_RGBA12, or GL_RGBA16.

Specifies the width of the texture image. Must be $2 sup n + 2 ("border")$ for some
integer n. All implementations support texture images that are at least 64 texels wide.
The height of the 1D texture imageis 1.

Specifies the width of the border. Must be either 0 or 1.

Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
GL_RGBA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED BYTE, GL _BYTE, GL _BITMAP, GL_UNSIGNED SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

Specifies a pointer to the image datain memory.

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable one-dimensional texturing, call fglEnable and fgIDisable with argument
GL_TEXTURE_1D.

Texture images are defined with fglTexlmagelD. The arguments describe the parameters of the texture
image, such as width, width of the border, level-of-detail number (see fglTexParameter), and the internal

Page 1

July 22, 1997

FGLTEXIMAGE1D() UNIX System V FGLTEXIMAGEI1D()

resolution and format used to store the image. The last three arguments describe how the image is
represented in memory; they are identical to the pixel formats used for fglDrawPixels.

If target is GL_PROXY_TEXTURE_1D, no datais read from pixels, but al of the texture image state is
recalculated, checked for consistency, and checked against the implementation’s capabilities. If the imple-
mentation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but does
not generate an error (see fglGetError). To query for an entire mipmap array, use an image array level
greater than or equal to 1.

If targetisGL_TEXTURE_1D, dataisread from pixels as a sequence of signed or unsigned bytes, shorts,
or longs, or single-precision floating-point values, depending on type. These values are grouped into sets of
one, two, three, or four values, depending on format, to form elements. If typeis GL_BITMAP, the datais
considered as a string of unsigned bytes (and format must be GL_COL OR_INDEX). Each data byte is
treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK _LSB FIRST (see fglPix-
elStore).

The first element corresponds to the left end of the texture array. Subsequent elements progress left-to-
right through the remaining texels in the texture array. The final element corresponds to the right end of
the texture array.

format determines the composition of each element in pixels. It can assume one of nine symbolic vaues:

GL_COLOR_INDEX
Each element is a single value, a color index. The GL converts it to fixed point (with an
unspecified number of zero bits to the right of the binary point), shifted left or right depending
on the value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see
foglPixelTransfer). The resulting index is converted to a set of color components using the
GL_PIXEL_MAP_|_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B,
and GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating point and assembles it
into an RGBA element by attaching O for green and blue, and 1 for alpha. Each component is
then multiplied by the signed scale factor GL_c¢ SCALE, added to the signed bias
GL_c BIAS, and clamped to the range [0,1] (see fglPixel Transfer).

GL_GREEN
Each element is a single green component. The GL converts it to floating point and assembles
it into an RGBA element by attaching O for red and blue, and 1 for alpha. Each component is
then multiplied by the signed scale factor GL_c¢ SCALE, added to the signed bias
GL_c BIAS, and clamped to the range [0,1] (see fglPixel Transfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating point and assembles it
into an RGBA element by attaching O for red and green, and 1 for alpha. Each component is
then multiplied by the signed scale factor GL_c¢ SCALE, added to the signed bias
GL_c BIAS, and clamped to the range [0,1] (see fglPixel Transfer).

GL_ALPHA
Each element is a single alpha component. The GL converts it to floating point and assembles
it into an RGBA element by attaching O for red, green, and blue. Each component is then mul-
tiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see fglPixel Transfer).

GL_RGB Each element is an RGB triple. The GL converts it to floating point and assembles it into an
RGBA element by attaching 1 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c _BIAS, and clamped to the range
[0,1] (seefglPixel Transfer).

GL_RGBA
Each element contains all four components. Each component is then multiplied by the signed

July 22, 1997 Page 2

FGLTEXIMAGE1D() UNIX System V FGLTEXIMAGEI1D()

NOTES

scale factor GL_c_SCALE, added to the signed bias GL_c BIAS, and clamped to the range
[0,1] (seefglPixel Transfer).

GL_LUMINANCE
Each element isa single luminance value. The GL convertsit to floating point, then assembles
it into an RGBA element by replicating the luminance value three times for red, green, and
blue and attaching 1 for alpha. Each component is then multiplied by the signed scale factor
GL_c _SCALE, added to the signed bias GL_c BIAS, and clamped to the range [0,1] (see
fglPixel Transfer).

GL_LUMINANCE_ALPHA
Each element isaluminance/alpha pair. The GL convertsit to floating point, then assembles it
into an RGBA element by replicating the luminance value three times for red, green, and blue.
Each component is then multiplied by the signed scale factor GL_c SCALE, added to the
signed bias GL_c BIAS, and clamped to the range [0,1] (see fglPixel Transfer).

If an application wants to store the texture at a certain resolution or in a certain format, it can request the
resolution and format with internalformat. The GL will choose an interna representation that closely
approximates that requested by internalformat, but it may not match exactly. (The representations
specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match
exactly. The numeric values 1, 2, 3, and 4 may also be used to specify the preceding representations.)

Use the GL_PROXY_TEXTURE_1D target to try out a resolution and format. The implementation will
update and recompute its best match for the requested storage resolution and format. To query this state,
call fglGetTexL evelParameter. If the texture cannot be accommodated, texture state is set to O.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A
two-component image uses the R and A values. A three-component image uses the R, G, and B values. A
four-component image uses al of the RGBA components.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixelsin a fglDrawPixels command,
except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. fglPixelStore
and fglPixel Transfer modes affect texture images in exactly the way they affect fglDrawPixels.

GL_PROXY_TEXTURE_1D may only be used if the GL versionis 1.1 or greater.
Internal formats other than 1, 2, 3, or 4 may only be used if the GL versionis 1.1 or grester.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is allocated to
accommodate a texture of width width. You can then download subtextures to initialize the texture
memory. The image is undefined if the program tries to apply an uninitialized portion of the texture image
to aprimitive.

ERRORS

Page 3

GL_INVALID_ENUM is generated if target is not GL _TEXTURE_1D or
GL_PROXY_TEXTURE_1D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other
than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM isgenerated if typeis not atype constant.
GL_INVALID_ENUM isgenerated if typeisGL_BITMAP and format isnot GL_COL OR_INDEX.
GL_INVALID_VALUE isgenerated if level islessthan O.

GL_INVALID_VALUE may be generated if level is greater than $log sub 2$max, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

July 22, 1997

FGLTEXIMAGE1D() UNIX System V FGLTEXIMAGEI1D()

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution
and format symbolic constants.

GL_INVALID VALUE is generated if width is less than O or greater than 2 +
GL_MAX_TEXTURE_SIZE, or if it cannot be represented as $2 sup n + 2("border")$ for some integer
value of n.

GL_INVALID_VALUE isgenerated if border isnot O or 1.
GL_INVALID_OPERATION is generated if fglTexImagelD is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet TexI mage fgll sEnabled with argument GL_TEXTURE_1D

SEE ALSO
fglCopyPixels, fglCopyTexIlmagelD, fglCopyTexl mage2D, fglCopyTexSublmagelD,
fglCopyTexSublmage2D, fglDrawPixels, fglPixelStore, fglPixelTransfer, fglTexEnv, fglTexGen,
fol TexImage2D, fgl TexSubl magelD, fgl TexSublmage2D, fgl TexParameter

July 22, 1997 Page 4

FGLTEXIMAGE2D ()

NAME

UNIX System V FGLTEXIMAGE2D ()

fgl TexImage2D - specify atwo-dimensional texture image

FORTRAN SPECIFICATION
SUBROUTINE fgITexI mage2D(INTEGER* 4 target,

delim $$
PARAMETERS
target

level

internalformat

width
height
border

format

type

pixels
DESCRIPTION

INTEGER* 4 level,
INTEGER* 4 internalformat,
INTEGER* 4 width,
INTEGER* 4 height,
INTEGER* 4 border,
INTEGER* 4 format,
INTEGER* 4 type,
CHARACTER*8 pixels)

Specifies the target texture. Must be GL_TEXTURE_2D or
GL_PROXY_TEXTURE_2D.

Specifies the level-of-detail number. Level O is the base image level. Level n is the nth
mipmap reduction image.

Specifies the number of color componentsin the texture. Must be 1, 2, 3, or 4, or one of the
following symbolic constantss GL_ALPHA, GL_ALPHA4, GL_ALPHAS,
GL_ALPHA12, GL_ALPHAZ16, GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCEIS6,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4 _ALPHAA4,
GL_LUMINANCEG_ALPHAZ2, GL_LUMINANCES8_ALPHAS,
GL_LUMINANCE12 ALPHAA4, GL_LUMINANCE12 ALPHA12,
GL_LUMINANCE16_ALPHA1S6, GL_INTENSITY, GL_INTENSITY4,

GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_R3 G3 B2,
GL_RGB, GL_RGB4, GL_RGB5, GL_RGBS8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_Al, GL_RGBAS, GL_RGB10_A2,
GL_RGBA12, or GL_RGBA16.

Specifies the width of the texture image. Must be $2 sup n + 2 ("border")$ for some
integer $n3$. All implementations support texture images that are at least 64 texels wide.

Specifies the height of the texture image. Must be $2 sup m + 2 ("border")$ for some
integer m. All implementations support texture images that are at least 64 texels high.

Specifies the width of the border. Must be either O or 1.

Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
GL_RGBA,GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FL OAT.

Specifies a pointer to the image datain memory.

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable two-dimensional texturing, call fglEnable and fgIDisable with argument
GL_TEXTURE_2D.

Page 1

July 22, 1997

FGLTEXIMAGE2D () UNIX System V FGLTEXIMAGE2D ()

To define texture images, cal fglTexlmage2D. The arguments describe the parameters of the texture
image, such as height, width, width of the border, level-of-detail number (see fglTexParameter), and
number of color components provided. The last three arguments describe how the image is represented in
memory; they are identical to the pixel formats used for fglDrawPixels.

If target is GL_PROXY_TEXTURE_2D, no datais read from pixels, but al of the texture image state is
recalculated, checked for consistency, and checked against the implementation’s capabilities. If the imple-
mentation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but does
not generate an error (see fglGetError). To query for an entire mipmap array, use an image array level
greater than or equal to 1.

If targetisGL_TEXTURE_2D, dataisread from pixels as a sequence of signed or unsigned bytes, shorts,
or longs, or single-precision floating-point values, depending on type. These values are grouped into sets of
one, two, three, or four values, depending on format, to form elements. If typeis GL_BITMAP, the datais
considered as a string of unsigned bytes (and format must be GL_COL OR_INDEX). Each data byte is
treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK _LSB FIRST (see fglPix-
elStore).

The first element corresponds to the lower Ieft corner of the texture image. Subsequent elements progress
left-to-right through the remaining texels in the lowest row of the texture image, and then in successively
higher rows of the texture image. The final element corresponds to the upper right corner of the texture
image.

format determines the composition of each element in pixels. It can assume one of nine symbolic vaues:

GL_COLOR_INDEX
Each element is a single value, a color index. The GL converts it to fixed point (with an
unspecified number of zero bits to the right of the binary point), shifted left or right depending
on the value and sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see
foglPixelTransfer). The resulting index is converted to a set of color components using the
GL_PIXEL_MAP_|I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_|I_TO_B,
and GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating point and assembles it
into an RGBA element by attaching O for green and blue, and 1 for alpha. Each component is
then multiplied by the signed scale factor GL_c¢ SCALE, added to the signed bias
GL_c BIAS, and clamped to the range [0,1] (see fglPixel Transfer).

GL_GREEN
Each element is a single green component. The GL converts it to floating point and assembles
it into an RGBA element by attaching O for red and blue, and 1 for alpha. Each component is
then multiplied by the signed scale factor GL_c¢ SCALE, added to the signed bias
GL_c BIAS, and clamped to the range [0,1] (see fglPixel Transfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating point and assembles it
into an RGBA element by attaching O for red and green, and 1 for alpha. Each component is
then multiplied by the signed scale factor GL_c¢ SCALE, added to the signed bias
GL_c BIAS, and clamped to the range [0,1] (see fglPixel Transfer).

GL_ALPHA
Each element is a single alpha component. The GL converts it to floating point and assembles
it into an RGBA element by attaching O for red, green, and blue. Each component is then mul-
tiplied by the signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see fglPixel Transfer).

GL_RGB Each element is an RGB triple. The GL converts it to floating point and assembles it into an
RGBA element by attaching 1 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the range
[0,1] (see

July 22, 1997 Page 2

FGLTEXIMAGE2D () UNIX System V FGLTEXIMAGE2D ()

NOTES

foglPixel Transfer).

GL_RGBA
Each element contains all four components. Each component is multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c BIAS, and clamped to the range [0,1]
(see fglPixel Transfer).

GL_LUMINANCE
Each element isa single luminance value. The GL convertsit to floating point, then assembles
it into an RGBA element by replicating the luminance value three times for red, green, and
blue and attaching 1 for alpha. Each component is then multiplied by the signed scale factor
GL_c SCALE, added to the signed hias GL_c BIAS, and clamped to the range [0,1] (see
foglPixel Transfer).

GL_LUMINANCE_ALPHA
Each element is aluminance/alpha pair. The GL converts it to floating point, then assembles it
into an RGBA element by replicating the luminance value three times for red, green, and blue.
Each component is then multiplied by the signed scale factor GL_c SCALE, added to the
signed bias GL_c¢ BIAS, and clamped to the range [0,1] (see
folPixel Transfer).

Refer to the fglDrawPixels reference page for a description of the acceptable values for the type parame-
ter.

If an application wants to store the texture at a certain resolution or in a certain format, it can request the
resolution and format with internalformat. The GL will choose an internal representation that closely
approximates that requested by internalformat, but it may not match exactly. (The representations
specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match
exactly. The numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_2D target to try out a resolution and format. The implementation will
update and recompute its best match for the requested storage resolution and format. To then query this
state, call fglGetTexL evelParameter. If the texture cannot be accommodated, texture stateis set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A
two-component image uses the R and A values. A three-component image uses the R, G, and B values. A
four-component image uses al of the RGBA components.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixelsin a fglDrawPixels command,
except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. fglPixelStore
and fglPixel Transfer modes affect texture imagesin exactly the way they affect fglDrawPixels.

fglTeximage2D and GL_PROXY_TEXTURE_2D are only available if the GL versionis 1.1 or greater.
Internal formats other than 1, 2, 3, or 4 may only be used if the GL versionis 1.1 or greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is allocated to
accommodate a texture of width width and height height. You can then download subtextures to initialize
this texture memory. The image is undefined if the user tries to apply an uninitialized portion of the texture
image to a primitive.

ERRORS

Page 3

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D or
GL_PROXY_TEXTURE_2D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other
than GL_STENCIL _INDEX and GL_DEPTH_COMPONENT are accepted.

July 22, 1997

FGLTEXIMAGE2D () UNIX System V FGLTEXIMAGE2D ()

GL_INVALID_ENUM isgenerated if typeisnot atype constant.
GL_INVALID_ENUM isgenerated if typeisGL_BITMAP and format isnot GL_COLOR_INDEX.
GL_INVALID_VALUE isgenerated if level islessthan O.

GL_INVALID_VALUE may be generated if level is greater than $log sub 2$max, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution
and format symbolic constants.

GL_INVALID_VALUE is generated if width or height is less than O or greater than 2 +
GL_MAX_TEXTURE_SIZE, or if either cannot be represented as $2 sup k + 2("border")$ for some
integer value of k.

GL_INVALID_VALUE isgenerated if border isnot O or 1.

GL_INVALID_OPERATION is generated if fglTeximage2D is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
folGetTexl mage
fgllsEnabled with argument GL_TEXTURE_2D

SEE ALSO
fglCopyPixels, fglCopyTexImagelD, fglCopyTexImage2D, fglCopyTexSublmagelD,
fglCopyTexSublmage2D, fglDrawPixels, fglPixelStore, fglPixelTransfer, fglTexEnv, fglTexGen,
fglTexImagelD, fgl TexSubl magelD, fgl T exSubl mage2D,
fgl TexParameter

July 22, 1997 Page 4

FGLTEXPARAMETER() UNIX System V FGLTEXPARAMETER()

NAME
fol TexParameterf, fgl TexParameteri, fgl TexParameterfv, fglTexParameteriv — set texture parameters

FORTRAN SPECIFICATION
SUBROUTINE fgI TexParameter f(INTEGER* 4 target,

INTEGER* 4 pname,
REAL*4 param)
SUBROUTINE fglTexParameteri(INTEGER* 4 target,
INTEGER* 4 pname,
INTEGER*4 param)
delim $$
PARAMETERS
target Specifiesthe target texture, which must be either GL_ TEXTURE_1D or GL_TEXTURE_2D.
pname
Specifies the symbolic name of a single-valued texture parameter. pname can be one of the follow-
ing: GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG FILTER,
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T,or GL_TEXTURE_PRIORITY.
param

Specifies the value of pname.

FORTRAN SPECIFICATION
SUBROUTINE fgITexPar ameter fv(INTEGER* 4 target,
INTEGER*4 pname,
CHARACTER*8 params)
SUBROUTINE fgITexPar ameteriv(INTEGER*4 target,
INTEGER* 4 pnarme,
CHARACTER*8 params)

PARAMETERS
target Specifiesthe target texture, which must be either GL_TEXTURE_1D or GL_TEXTURE_2D.

pname Specifies the symbolic name of a texture parameter. pname can be one of the following:
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER,

GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T,
GL_TEXTURE_BORDER_COLOR, or GL_TEXTURE_PRIORITY.

params Specifies a pointer to an array where the value or values of pname are stored.
DESCRIPTION

Texture mapping is a technique that applies an image onto an object’s surface as if the image were a deca
or cellophane shrink-wrap. The image is created in texture space, with an (s, t) coordinate system. A

texture is a one- or two-dimensiona image and a set of parameters that determine how samples are derived
from the image.

fogl TexParameter assignsthe value or values in params to the texture parameter specified as pname. target
defines the target texture, either GL_TEXTURE_1D or GL_TEXTURE_2D. The following symbols are
accepted in pname:
GL_TEXTURE_MIN_FILTER
The texture minifying function is used whenever the pixel being textured maps to an area
greater than one texture element. There are six defined minifying functions. Two of them use

the nearest one or nearest four texture elements to compute the texture value. The other four
use mipmaps.

Page 1 July 22, 1997

FGLTEXPARAMETER() UNIX System V FGLTEXPARAMETER()

A mipmap is an ordered set of arrays representing the same image at progressively lower reso-
[utions. If the texture has dimensions $2 sup n times 2 sup m$, there are $ bold max (n, m) +
1 $ mipmaps. The first mipmap is the original texture, with dimensions $2 sup n times 2 sup
m$. Each subsequent mipmap has dimensions$2 sup{ k- 1} times2sup{ | - 1}$, where $2
sup k times 2 sup I$ are the dimensions of the previous mipmap, until either $k = 0$ or $I=0$.
At that point, subsequent mipmaps have dimension $ 1 times2sup {1 -1} or2sup{ k -
1} times 1 $ until the fina mipmap, which has dimension $1 times 1$. To define the mipmaps,
call fglTexImagelD, fglTexImage2D, fglCopyTexlmagelD, or fglCopyTexlmage2D with
the level argument indicating the order of the mipmaps. Level Oisthe original texture; level $
bold max (n, m) $isthefinal $1 times 1$ mipmap.

params supplies a function for minifying the texture as one of the following:

GL_NEAREST
Returns the value of the texture element that is nearest (in Manhattan distance) to
the center of the pixel being textured.

GL_LINEAR
Returns the weighted average of the four texture elements that are closest to the
center of the pixel being textured. These can include border texture elements,
depending on the values of GL _TEXTURE WRAP S and
GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_NEAREST_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured
and usesthe GL_NEAREST criterion (the texture element nearest to the center of
the pixel) to produce a texture value.

GL_LINEAR_MIPMAP_NEAREST
Chooses the mipmap that most closely matches the size of the pixel being textured
and uses the GL_L INEAR criterion (a weighted average of the four texture ele-
ments that are closest to the center of the pixel) to produce atexture value.

GL_NEAREST_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being tex-
tured and uses the GL_NEAREST criterion (the texture element nearest to the
center of the pixel) to produce a texture value from each mipmap. The fina tex-
ture value is aweighted average of those two values.

GL_LINEAR_MIPMAP_LINEAR
Chooses the two mipmaps that most closely match the size of the pixel being tex-
tured and uses the GL_LINEAR criterion (a weighted average of the four texture
elements that are closest to the center of the pixel) to produce atexture value from
each mipmap. Thefinal texture value is aweighted average of those two values.

As more texture elements are sampled in the minification process, fewer aiasing artifacts will
be apparent. Whilethe GL_NEAREST and GL _LINEAR minification functions can be faster
than the other four, they sample only one or four texture elements to determine the texture
value of the pixel being rendered and can produce moire patterns or ragged transitions. The
initial value of GL_TEXTURE_MIN_FILTER isGL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MAG_FILTER

July 22, 1997

The texture magnification function is used when the pixel being textured maps to an area less
than or equal to one texture element. It sets the texture magnification function to either
GL_NEAREST or GL_LINEAR (see below). GL_NEAREST is generaly faster than
GL_LINEAR, but it can produce textured images with sharper edges because the transition
between texture elements is not as smooth. The initid vaue of
GL_TEXTURE_MAG FILTERisGL_LINEAR.

Page 2

FGLTEXPARAMETER() UNIX System V FGLTEXPARAMETER()

NOTES

GL_NEAREST
Returns the value of the texture element that is nearest (in Manhattan distance) to
the center of the pixel being textured.

GL_LINEAR
Returns the weighted average of the four texture elements that are closest to the
center of the pixel being textured. These can include border texture elements,
depending on the values of GL_TEXTURE_WRAP_S and
GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_TEXTURE_WRAP_S
Sets the wrap parameter for texture coordinate s to either GL_CLAMP or GL_REPEAT.
GL_CLAMP causes s coordinates to be clamped to the range [0,1] and is useful for
preventing wrapping artifacts when mapping a single image onto an object. GL_REPEAT
causes the integer part of the s coordinate to be ignored; the GL uses only the fractional part,
thereby creating a repeating pattern. Border texture elements are accessed only if wrapping is
set to GL_CLAMP. Initialy, GL_TEXTURE_WRAP_Sissetto GL_REPEAT.

GL_TEXTURE_WRAP_T
Setsthe wrap parameter for texture coordinate t to either GL_CLAMP or GL_REPEAT. See
the discussion under GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set
to GL_REPEAT.

GL_TEXTURE_BORDER_COLOR
Sets aborder color. params contains four values that comprise the RGBA color of the texture
border. Integer color components are interpreted linearly such that the most positive integer
maps to 1.0, and the most negative integer maps to -1.0. The values are clamped to the range
[0,1] when they are specified. Initially, the border color is (0, O, 0, 0).

GL_TEXTURE_PRIORITY
Specifies the texture residence priority of the currently bound texture. Permissible values are
intherange [0, 1]. SeefglPrioritizeTextures and fglBindTextur e for more information.

Suppose that a program has enabled texturing (by calling fglEnable with argument GL_TEXTURE_1D or
GL_TEXTURE_2D) and has set GL_TEXTURE_MIN_FILTER to one of the functions that requires a
mipmap. If either the dimensions of the texture images currently defined (with previous calls to
fglTeximagelD, fglTexlmage2D, fglCopyTexlmagelD, or fglCopyTexlmage2D) do not follow the
proper sequence for mipmaps (described above), or there are fewer texture images defined than are needed,
or the set of texture images have differing numbers of texture components, then it is as if texture mapping
were disabled.

Linear filtering accesses the four nearest texture elements only in 2D textures. In 1D textures, linear filter-
ing accesses the two nearest texture elements.

ERRORS

GL_INVALID_ENUM isgenerated if target or pname is not one of the accepted defined values.

GL_INVALID_ENUM isgenerated if params should have a defined constant value (based on the value of
pname) and does not.

GL_INVALID_OPERATION is generated if fglTexParameter is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS

fglGetTexParameter
fglGetTexL evelParameter

SEE ALSO

Page 3

fglBindTexture, fglCopyPixels, fglCopyTexlmagelD, fglCopyTexl mage2D, fglCopyTexSubl magelD,

July 22, 1997

FGLTEXPARAMETER() UNIX System V FGLTEXPARAMETER()

fglCopyTexSublmage2D, fglDrawPixels, fglPixelStore, fglPixelTransfer, fglPrioritizeTextures,
fglTexEnv, fglTexGen, fglTexlmagelD, fglTexI mage2D, fglTexSubl magelD, fgl TexSubl mage2D

July 22, 1997 Page 4

FGLTEXSUBIMAGEI1D() UNIX System V FGLTEXSUBIMAGE1D()

NAME

fgl TexSublmagelD - specify a two-dimensional texture subimage

FORTRAN SPECIFICATION

SUBROUTINE fgI TexSubl magelD(INTEGER* 4 target,
INTEGER* 4 level,

INTEGER* 4 xoffset,
INTEGER* 4 width,
INTEGER* 4 format,
INTEGER* 4 type,
CHARACTER*8 pixels)
delim $$
PARAMETERS

target Specifiesthe target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level O is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies atexel offset in the x direction within the texture array.
width Specifies the width of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
GL_RGBA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, and GL_FL OAT.

pixels Specifies a pointer to the image datain memory.

DESCRIPTION

NOTES

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable or disable one-dimensional texturing, call fglEnable and fglDisable with argument
GL_TEXTURE_1D.

fgl TexSublmagelD redefines a contiguous subregion of an existing one-dimensional texture image. The
texels referenced by pixels replace the portion of the existing texture array with x indices xoffset and
$'xoffset""+™width"™-"1$, inclusive. This region may not include any texels outside the range of the tex-
ture array asit was originally specified. Itisnot an error to specify a subtexture with width of 0, but such a
specification has no effect.

fglTexSublmagelD isavailable only if the GL versionis 1.1 or greater.
Texturing has no effect in color index mode.

foglPixelStore and fglPixelTransfer modes affect texture images in exactly the way they affect
fglDrawPixels.

ERRORS

Page 1

GL_INVALID_ENUM isgenerated if target is not one of the allowable values.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
fgl TexImagelD operation.

GL_INVALID_VALUE isgenerated if level islessthan O.

July 22, 1997

FGLTEXSUBIMAGEI1D() UNIX System V FGLTEXSUBIMAGE1D()

GL_INVALID_VALUE may be generated if level is greater than $log sub 2$max, where max is the
returned value of GL_ MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if $'xoffset” "<” ™-b$, or if $("xoffset""+™"width") "> (w "~ b)$.
Where w isthe GL_TEXTURE_WIDTH, and b is the width of the GL_TEXTURE_BORDER of
the texture image being modified. Note that w includes twice the border width.

GL_INVALID_VALUE isgenerated if width islessthan 0.

GL_INVALID_ENUM isgenerated if format is not an accepted format constant.
GL_INVALID_ENUM isgenerated if typeis not atype constant.

GL_INVALID_ENUM isgenerated if typeisGL_BITMAP and format isnot GL_COL OR_INDEX.

GL_INVALID_OPERATION is generated if fglTexSublmagelD is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGetTexI mage
fgll sEnabled with argument GL_TEXTURE_1D

SEE ALSO
fglCopyTexImagelD, fglCopyTexImage2D, fglCopyTexSublmagelD, fglCopyTexSublmage2D,
fglDrawPixels, fglPixelStore, fglPixelTransfer, fglTexEnv, fglTexGen, fglTexImagelD,
fgl Texlmage2D, fgl TexParameter, fgl TexSubl mage2D

July 22, 1997 Page 2

FGLTEXSUBIMAGE2D () UNIX System V FGLTEXSUBIMAGE2D ()

NAME

fgl TexSubl mage2D — specify a two-dimensional texture subimage

FORTRAN SPECIFICATION

SUBROUTINE fgI TexSubl mage2D(INTEGER* 4 target,
INTEGER* 4 level,
INTEGER* 4 xoffset,
INTEGER* 4 yoffset,
INTEGER* 4 width,
INTEGER* 4 height,
INTEGER* 4 format,
INTEGER* 4 type,
CHARACTER*8 pixels)

delim $$

PARAMETERS

target Specifiesthe target texture. Must be GL_TEXTURE_2D.

level Specifies the level-of-detail number. Level O is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies atexel offset in the x direction within the texture array.
yoffset Specifies atexel offset in they direction within the texture array.
width Specifies the width of the texture subimage.
height Specifies the height of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_RED, GL_GREEN, GL BLUE, GL_ALPHA, GL_RGB,
GL_RGBA,GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, and GL_FL OAT.

pixels Specifies a pointer to the image datain memory.

DESCRIPTION

NOTES

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable two-dimensional texturing, call fglEnable and fgIDisable with argument
GL_TEXTURE_2D.

fgl TexSubl mage2D redefines a contiguous subregion of an existing two-dimensional texture image. The
texels referenced by pixels replace the portion of the existing texture array with x indices xoffset and
$'xoffset""+™"width""-"1%$, inclusive, and y indices yoffset and $"yoffset""+™"height""-"1%, inclusive. This
region may not include any texels outside the range of the texture array as it was originally specified. Itis

not an error to specify a subtexture with zero width or height, but such a specification has no effect.

fgl TexSubl mage2D is available only if the GL versionis 1.1 or greater.
Texturing has no effect in color index mode.

foglPixelStore and fglPixelTransfer modes affect texture images in exactly the way they affect
fglDrawPixels.

ERRORS

Page 1

GL_INVALID_ENUM isgenerated if targetisnot GL_TEXTURE_2D.

July 22, 1997

FGLTEXSUBIMAGE2D () UNIX System V FGLTEXSUBIMAGE2D ()

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
fgl Texlmage2D operation.

GL_INVALID_VALUE isgenerated if level islessthan 0.

P GL_INVALID_VALUE may be generated if level is greater than $log sub 2$max, where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID VALUE is generated if $'xoffset" “<" ~-b$, $("xoffset""+™"width") "> (w™-"b)$,
$'yoffset" "< ~-b$, or $("yoffset" "+ "height") >~ (n"-"b)$. Where wisthe GL_TEXTURE_WIDTH,
h isthe GL_TEXTURE_HEIGHT, and b is the border width of the texture image being modified.
Note that w and h include twice the border width.

GL_INVALID_VALUE isgenerated if width or height isless than O.

GL_INVALID_ENUM isgenerated if format is not an accepted format constant.
GL_INVALID_ENUM isgenerated if typeis not atype constant.

GL_INVALID_ENUM isgenerated if typeisGL_BITMAP and format isnot GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if fglTexSubl mage2D is executed between the execution of
fglBegin and the corresponding execution of fglEnd.

ASSOCIATED GETS
foglGetTexl mage
fgllsEnabled with argument GL_TEXTURE_2D

SEE ALSO
fglCopyTexImagelD, fglCopyTexImage2D, fglCopyTexSublmagelD, fglCopyTexSublmage2D,
fglDrawPixels, fglPixelStore, fglPixelTransfer, fglTexEnv, fglTexGen, fglTexImagelD,
fgl Texlmage2D, fgl TexSubl magelD, fgl T exPar ameter

July 22, 1997 Page 2

FGLTRANSLATE() UNIX System V FGLTRANSLATE()

NAME
fglTrandated, fgl Translatef — multiply the current matrix by atranslation matrix

FORTRAN SPECIFICATION
SUBROUTINE fglTranslated(REAL*8 x,

REAL*8Y,
REAL*82)
SUBROUTINE fglTrandatef(REAL*4 x,
REAL*4y,
REAL*4 z)
delim $$
PARAMETERS
X, ¥, Z
Specify the x, y, and z coordinates of a trandation vector.
DESCRIPTION

fglTrandate produces atrandation by $("x","y","z")$. The current matrix (see
fglMatrixM ode) is multiplied by this translation matrix, with the product replacing the current matrix, as if
fglMultMatrix were called with the following matrix for its argument:

left (~ down 20 matrix {
ccol { 1™ above 0™ above 0 above 0 }
ccol { 0 above 1™ above 0 above 0 }
ccol { 0 above 0™ above 1™ above 0 }
ccol { "x"” above"y"” above "z"" above 1} } “right)

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, al objects drawn after a call to
fglTrandate are trandlated.

Use fglPushMatrix and fglPopM atrix to save and restore the untranslated coordinate system.

ERRORS
GL_INVALID_OPERATION isgenerated if fgl Trandate is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_MATRIX_MODE
fglGet with argument GL_MODELVIEW_MATRIX
fglGet with argument GL_PROJECTION_MATRIX
fglGet with argument GL_TEXTURE_MATRIX

SEE ALSO
fglMatrixM ode, fgIMultM atrix, fglPushMatrix, fglRotate, fglScale

Page 1 July 22, 1997

FGLVERTEX() UNIX System V FGLVERTEX()

NAME
folVertex2d, fglVertex2f, fglVertex2i, fglVertex2s, fglVertex3d, fglVertex3f, fglVertex3i, fglVertex3s,
foglVertexdd, fglVertexaf, fglVertexdi, fglVertexds, fglVertex2dv, fglVertex2fv, fglVertex2iv,
folVertex2sv, fglVertex3dv, fglVertex3fv, fglVertex3iv, fglVertex3sv, fglVertexddv, fglVertex4fv,
foglVertexdiv, fglVertexdsv — specify a vertex

FORTRAN SPECIFICATION
SUBROUTINE fglVertex2d(REAL*8 x,
REAL*8Y)
SUBROUTINE fglVertex2f(REAL*4 x,
REAL*4vy)
SUBROUTINE fglVertex2i(INTEGER*4 X,
INTEGER*4y)
SUBROUTINE fglVertex2s(INTEGER*2 x,
INTEGER*2y)
SUBROUTINE fglVertex3d(REAL*8 x,
REAL*8Y,
REAL*82)
SUBROUTINE fglVertex3f(REAL*4 x,
REAL*4y,
REAL*4z)
SUBROUTINE fglVertex3i(INTEGER*4 X,
INTEGER* 4y,
INTEGER*4 z)
SUBROUTINE fglVertex3s(INTEGER*2 x,
INTEGER*2y,
INTEGER*2 z)
SUBROUTINE fglVertex4d(REAL*8 x,
REAL*8Y,
REAL*8z,
REAL*8w)
SUBROUTINE fglVertex4f(REAL*4 x,
REAL*4y,
REAL*4 z,
REAL*4w)
SUBROUTINE fglVertexdi(INTEGER*4 X,
INTEGER* 4y,
INTEGER*4 2,
INTEGER*4 w)
SUBROUTINE fglVertex4s(INTEGER*2 x,
INTEGER*2y,
INTEGER*2 z,
INTEGER*2 w)

PARAMETERS
X, ¥, Z, W
Specify X, y, z, and w coordinates of a vertex. Not all parameters are present in all forms of the
command.

FORTRAN SPECIFICATION
SUBROUTINE fglVertex2dv(CHARACTER*8 V)
SUBROUTINE fglVertex2fv(CHARACTER*8 V)

Page 1 July 22, 1997

FGLVERTEX() UNIX System V FGLVERTEX()

SUBROUTINE fglVertex2iv(CHARACTER*8 V)
SUBROUTINE fglVertex2sv(CHARACTER*8 V)
SUBROUTINE fglVertex3dv(CHARACTER*8 V)
SUBROUTINE fglVertex3fv(CHARACTER*8 V)
SUBROUTINE fglVertex3iv(CHARACTER*8 V)
SUBROUTINE fglVertex3sv(CHARACTER*8 V)
SUBROUTINE fglVertex4dv(CHARACTER*8 V)
SUBROUTINE fglVertex4fv(CHARACTER*8 V)
SUBROUTINE fglVertexdiv(CHARACTER*8 V)
SUBROUTINE fglVertex4sv(CHARACTER*8 V)

PARAMETERS
% Specifies a pointer to an array of two, three, or four elements. The elements of a two-element
array are x and y; of athree-element array, X, y, and z; and of afour-element array, X, y, z, and w.
DESCRIPTION

fglVertex commands are used within fglBegin/fglEnd pairs to specify point, line, and polygon vertices.
The current color, normal, and texture coordinates are associated with the vertex when fglVertex is called.

When only x and y are specified, z defaults to 0 and w defaults to 1. When x, y, and z are specified, w
defaultsto 1.

NOTES
Invoking fglVertex outside of afglBegin/fglEnd pair results in undefined behavior.

SEE ALSO
fglBegin, fglCallList, fglColor, fglEdgeFlag, fglEvalCoord, fgll ndex, fglMaterial,
fglNormal, fglRect, fglTexCoord, fglVertexPointer

July 22, 1997 Page 2

FGLVERTEXPOINTER() UNIX System V FGLVERTEXPOINTER()

NAME

fglVertexPointer — define an array of vertex data

FORTRAN SPECIFICATION

SUBROUTINE fglVertexPointer (INTEGER*4 size,

INTEGER*4 type,

INTEGER*4 stride,

CHARACTER*8 pointer)
delim $$

PARAMETERS

size Specifies the number of coordinates per vertex; must be 2, 3, or 4. The initial valueis 4.

type Specifies the data type of each coordinate in the array. Symbolic constants GL_SHORT,
GL_INT,GL_FLOAT, and GL_DOUBLE are accepted. Theinitial valueis GL_FLOAT.

stride Specifies the byte offset between consecutive vertexes. If stride is O, the vertexes are understood to
be tightly packed in the array. The initial value
isO.

pointer Specifies a pointer to the first coordinate of the first vertex in the array.

DESCRIPTION

NOTES

fglVertexPointer specifies the location and data format of an array of vertex coordinates to use when
rendering. size specifies the number of coordinates per vertex and type the data type of the coordinates.
stride specifies the byte stride from one vertex to the next allowing vertexes and attributes to be packed into
asingle array or stored in separate arrays. (Single-array storage may be more efficient on some implemen-
tations; see fgllnterleavedArrays.) When a vertex array is specified, size, type, stride, and pointer are
saved as client-side state.

To enable and disable the vertex array, call fglEnableClientState and
fglDisableClientState with the argument GL_VERTEX_ARRAY. If enabled, the vertex array is used
when fglDrawArrays, fglDrawElements, or fglArrayElement is called.

Use fglDrawArrays to construct a sequence of primitives (all of the same type) from prespecified vertex
and vertex attribute arrays. Use fglArrayElement to specify primitives by indexing vertexes and vertex
attributes and fglDrawElements to construct a sequence of primitives by indexing vertexes and vertex
attributes.

foglVertexPointer isavailable only if the GL version is 1.1 or greater.

The vertex array is initially disabled and isn't accessed when fglArrayElement, fglDrawElements or
fglDrawArraysiscalled.

Execution of fglVertexPointer is not allowed between the execution of fglBegin and the corresponding
execution of fglEnd, but an error may or may not be generated. If no error is generated, the operation is
undefined.

fglVertexPointer istypicaly implemented on the client side.

Vertex array parameters are client-side state and are therefore not saved or restored by fglPushAttrib and
fglPopAttrib. Use fglPushClientAttrib and fglPopClientAttrib instead.

ERRORS

Page 1

GL_INVALID_VALUE isgenerated if sizeisnot 2, 3, or 4.
GL_INVALID_ENUM isgenerated if typeisisnot an accepted value.

July 22, 1997

FGLVERTEXPOINTER() UNIX System V FGLVERTEXPOINTER()

GL_INVALID_VALUE isgenerated if stride is negative.

ASSOCIATED GETS
fgllsEnabled with argument GL_VERTEX_ARRAY
fglGet with argument GL_VERTEX_ARRAY_SIZE
fglGet with argument GL_VERTEX_ARRAY_TYPE
fglGet with argument GL_VERTEX_ARRAY_STRIDE
fglGetPointerv with argument GL_VERTEX_ARRAY_POINTER

SEE ALSO
fglArrayElement, fglColor Pointer, fglDrawArrays, fglDrawElements,
fglEdgeFlagPointer, fglEnable, fglGetPointerv, fgll ndexPointer,

fgllnterleavedArrays, fgINormalPointer, fglPopClientAttrib, fglPushClientAttrib, fglTexCoord-

Pointer

July 22, 1997

Page 2

FGLVIEWPORT() UNIX System V FGLVIEWPORT()

NAME
fglViewport — set the viewport

FORTRAN SPECIFICATION
SUBROUTINE fglViewport(INTEGER*4 x,

INTEGER*4 Yy,
INTEGER* 4 width,
INTEGER*4 height)

delim $$

PARAMETERS
X, ¥
Specify the lower left corner of the viewport rectangle, in pixels. The initial valueis (0,0).
width, height

Specify the width and height of the viewport. When a GL context is first attached to a window, width
and height are set to the dimensions of that window.

DESCRIPTION
fglViewport specifies the affine transformation of x and y from normalized device coordinates to win-
dow coordinates. Let ($x sub nd$, $y sub nd$) be normalized device coordinates. Then the window coor-
dinates ($x sub w$, Sy sub w$) are computed as follows:

xsubw "="(xsubnd+ 1) left ("width" over 2 right) "+~ "Xx"

ysubw =" (y subnd + 1) left ("height" over 2 right) "+ "y"

Viewport width and height are silently clamped to a range that depends on the implementation. To query
thisrange, call fglGet with argument GL_MAX_VIEWPORT_DIMS.

ERRORS
GL_INVALID_VALUE isgenerated if either width or height is negative.

GL_INVALID_OPERATION isgenerated if fglViewport is executed between the execution of fglBegin
and the corresponding execution of fglEnd.

ASSOCIATED GETS
fglGet with argument GL_VIEWPORT
fglGet with argument GL_MAX_VIEWPORT_DIMS

SEE ALSO
fglDepthRange

Page 1 July 22, 1997

